Changeset 212


Ignore:
Timestamp:
13/01/06 13:58:38 (14 years ago)
Author:
lawrence
Message:

This is a fully documented V006

Location:
Discovery_Service/trunk/schema/numsim/v006
Files:
7 added
3 edited

Legend:

Unmodified
Added
Removed
  • Discovery_Service/trunk/schema/numsim/v006/HADCM3 PUM 4.5 Beowulf.xml

    r211 r212  
    11<?xml version="1.0" encoding="UTF-8"?> 
    2 <Simulated xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    3     xsi:noNamespaceSchemaLocation="file:/home/lawrence/CEDAR/ndg/D/NumSim/NumSim005.xsd" 
    4     EnsembleType="Single Model"> 
     2<NS_Simulated xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
     3    xsi:noNamespaceSchemaLocation="http://ndg.nerc.ac.uk/schema/NumSim006.xsd"> 
    54    <!-- Note that this is a handcoded example XML file which should not be regarded as 
    65    authoratative about the COAPEC 500 year run, Bryan Lawrence, September 2005 --> 
    7     <Description>This is a 500 year HadCM3 control integration performed with UM version 4.5 on a 
     6    <NS_Description>This is a 500 year HadCM3 control integration performed with UM version 4.5 on a 
    87        Linux Beowulf Cluster for the COAPEC programme. It is intended for use as a control 
    98        integration for perturbation experiments performed on the Beowulf cluster "Lewis" on which 
    109        it was run, and also for other statistical studies. This run is a 64-bit precision run. No 
    11         air-sea flux correction was used although a salinity correction was imposed.</Description> 
    12     <Model> 
    13         <Name>HadCM3 PUM V4.5 COAPEC Beowulf</Name> 
    14         <Configuration>GCM</Configuration> 
    15         <RelatedModel> 
    16             <URI>http://www.met-office.gov.uk/research/hadleycentre/models/HadCM3.html</URI> 
    17             <Relationship>This version was slightly modified from the Met Office Cray version to run 
     10        air-sea flux correction was used although a salinity correction was imposed.</NS_Description> 
     11    <NS_Model> 
     12        <NS_Name>HadCM3 PUM V4.5 COAPEC Beowulf</NS_Name> 
     13        <NS_Category>GCM</NS_Category> 
     14        <NS_RelatedModel> 
     15            <NS_URI>http://www.met-office.gov.uk/research/hadleycentre/models/HadCM3.html</NS_URI> 
     16                <NS_Relationship>This version was slightly modified from the Met Office Cray version to run 
    1817                in the beowulf environment and is V4.5 (cf V4.4 for the original HadCM3). Amongst 
    1918                the key physics differences:In the atmosphere: updated spectral coefficients for 
     
    2221                replacing the older Redi scheme, and a new parameterisation of Mediterranean and 
    2322                Hudson bay outflow.See also Lawrence and Iwi for other subtle differences. 
    24             </Relationship> 
    25         </RelatedModel> 
    26         <References> 
    27             <Reference>Iwi and Lawrence (2004). A comparison between HadCM3 integrations for COAPEC 
     23                </NS_Relationship> 
     24        </NS_RelatedModel> 
     25        <NS_References> 
     26            <NS_Reference>Iwi and Lawrence (2004). A comparison between HadCM3 integrations for COAPEC 
    2827                using Beowulf (UM version 4.5) and Cray T3E (UM version 4.4) 
    29                 http://home.badc.rl.ac.uk/iwi/um/downloads/comparison.pdf</Reference> 
    30             <Reference>Gordon, C., C. Cooper, C.A. Senior, H. Banks, J.M. Gregory, T.C. Johns, 
     28                http://home.badc.rl.ac.uk/iwi/um/downloads/comparison.pdf</NS_Reference> 
     29                <NS_Reference>Gordon, C., C. Cooper, C.A. Senior, H. Banks, J.M. Gregory, T.C. Johns, 
    3130                J.F.B. Mitchell and R.A. Wood, 2000: The simulation of SST, sea ice extents and 
    3231                ocean heat transports in a version of the Hadley Centre coupled model without flux 
    33                 adjustments. Climate Dynamics 16: 147-168. </Reference> 
    34         </References> 
    35         <Component> 
    36             <Name>Atmosphere</Name> 
    37             <Type>Atmosphere</Type> 
    38             <Description>The atmospheric component of HadCM3 has 19 levels with a horizontal 
     32                adjustments. Climate Dynamics 16: 147-168. </NS_Reference> 
     33        </NS_References> 
     34        <NS_Component> 
     35            <NS_Name>Atmosphere</NS_Name> 
     36            <NS_ComponentType>Atmosphere</NS_ComponentType> 
     37            <NS_Description>The atmospheric component of HadCM3 has 19 levels with a horizontal 
    3938                resolution of 2.5° of latitude by 3.75° of longitude, which produces a global grid 
    4039                of 96 x 73 grid cells. This is equivalent to a surface resolution of about 417 km x 
     
    4544                interactively permitting the direct and indirect forcing effects of sulphate 
    4645                aerosols to be modelled given scenarios for sulphur emissions and oxidants, this 
    47                 option was not used in this integration.</Description> 
    48             <RelatedModel> 
    49                 <URI>Need a URI to "official" HADAM3</URI> 
    50                 <Relationship>Portable Version</Relationship> 
    51             </RelatedModel> 
    52             <References> 
    53                 <Reference>Pope, V. D., M. L. Gallani, P. R. Rowntree and R. A. Stratton, 2000: The 
     46                option was not used in this integration.</NS_Description> 
     47            <NS_RelatedModel> 
     48                <NS_URI>Need a URI to "official" HADAM3</NS_URI> 
     49                <NS_Relationship>Portable Version</NS_Relationship> 
     50            </NS_RelatedModel> 
     51            <NS_References> 
     52                <NS_Reference>Pope, V. D., M. L. Gallani, P. R. Rowntree and R. A. Stratton, 2000: The 
    5453                    impact of new physical parametrizations in the Hadley Centre climate model -- 
    55                     HadAM3. Climate Dynamics, 16: 123-146. </Reference> 
    56             </References> 
    57             <Component> 
    58                 <Name>Radiation Scheme</Name> 
    59                 <Description> 6 and 8 spectral bands in the solar (shortwave) and terrestrial 
     54                    HadAM3. Climate Dynamics, 16: 123-146. </NS_Reference> 
     55            </NS_References> 
     56            <NS_Component> 
     57                <NS_Name>Radiation Scheme</NS_Name> 
     58                <NS_Description> 6 and 8 spectral bands in the solar (shortwave) and terrestrial 
    6059                    thermal (longwave) wavelengths. The radiative effects of minor greenhouse gases 
    6160                    as well as CO2, water vapour and ozone are explicitly represented (Edwards and 
    6261                    Slingo, 1996). A simple parametrization of background aerosol (Cusack et al 
    63                     1998) is also included.</Description> 
    64                 <References> 
    65                     <Reference>Edwards, J.M. and A. Slingo, 1996: Sudies with a flexible new 
     62                    1998) is also included.</NS_Description> 
     63                <NS_References> 
     64                    <NS_Reference>Edwards, J.M. and A. Slingo, 1996: Sudies with a flexible new 
    6665                        radiation code. I: Choosing a configuration for a large scale model. Quart. 
    67                         J. Roy. Meteor. Soc. 122: 689-719. </Reference> 
    68                     <Reference>Cusack S., A. Slingo, J.M. Edwards, and M. Wild, 1998: The radiative 
     66                        J. Roy. Meteor. Soc. 122: 689-719. </NS_Reference> 
     67                    <NS_Reference>Cusack S., A. Slingo, J.M. Edwards, and M. Wild, 1998: The radiative 
    6968                        impact of a simple aerosol climatology on the Hadley Centre GCM. Quart. J. 
    70                         Roy. Meteor. Soc. 124: 2517-2526. </Reference> 
    71                 </References> 
    72             </Component> 
    73             <Component> 
    74                 <Name>Land Surface Scheme</Name> 
    75                 <Type>LandSurface</Type> 
    76                 <Description>Includes a representation of the freezing and melting of soil moisture, 
     69                        Roy. Meteor. Soc. 124: 2517-2526. </NS_Reference> 
     70                </NS_References> 
     71            </NS_Component> 
     72            <NS_Component> 
     73                <NS_Name>Land Surface Scheme</NS_Name> 
     74                <NS_ComponentType>LandSurface</NS_ComponentType> 
     75                <NS_Description>Includes a representation of the freezing and melting of soil moisture, 
    7776                    as well as surface runoff and soil drainage; the formulation of evaporation 
    7877                    includes the dependence of stomatal resistance on temperature, vapour pressure 
    7978                    and CO2 concentration. The surface albedo is a function of snow depth, 
    80                     vegetation type and also of temperature over snow and ice.</Description> 
    81                 <References> 
    82                     <Reference>Cox, P., R. Betts, C. Bunton, R. Essery, P.R. Rowntree, and J. Smith, 
     79                    vegetation type and also of temperature over snow and ice.</NS_Description> 
     80                <NS_References> 
     81                    <NS_Reference>Cox, P., R. Betts, C. Bunton, R. Essery, P.R. Rowntree, and J. Smith, 
    8382                        1999: The impact of new land surface physics on the GCM simulation of 
    84                         climate and climate sensitivity. Climate Dynamics 15: 183-203. </Reference> 
    85                 </References> 
    86             </Component> 
    87             <Component> 
    88                 <Name>Convection Scheme</Name> 
    89                 <Description> A penetrative convective scheme is used, modified to include an 
    90                     explicit down-draught, and the direct impact of convection on momentum. </Description> 
    91                 <References> 
    92                     <Reference>Gregory and Rowntree, 1990? </Reference> 
    93                     <Reference>Gregory, D., R. Kershaw and P.M. Inness, 1997: Parametrization of 
     83                        climate and climate sensitivity. Climate Dynamics 15: 183-203. </NS_Reference> 
     84                </NS_References> 
     85            </NS_Component> 
     86            <NS_Component> 
     87                <NS_Name>Convection Scheme</NS_Name> 
     88                <NS_Description> A penetrative convective scheme is used, modified to include an 
     89                    explicit down-draught, and the direct impact of convection on momentum. </NS_Description> 
     90                <NS_References> 
     91                    <NS_Reference>Gregory and Rowntree, 1990? </NS_Reference> 
     92                    <NS_Reference>Gregory, D., R. Kershaw and P.M. Inness, 1997: Parametrization of 
    9493                        momentum transport by convection. II: tests in single column and general 
    95                         circulation models. Quart. J. Roy. Meteor. Soc. 123: 1153-1183. </Reference> 
    96                 </References> 
    97             </Component> 
    98             <Component> 
    99                 <Name>Gravity Wave</Name> 
    100                 <Description> Models the effects of anisotropic orography, high drag states, flow 
    101                     blocking and trapped lee waves.</Description> 
    102                 <References> 
    103                     <Reference>Milton, S.F. and C.A.Wilson, 1996: The impact of parametrized 
     94                        circulation models. Quart. J. Roy. Meteor. Soc. 123: 1153-1183. </NS_Reference> 
     95                </NS_References> 
     96            </NS_Component> 
     97            <NS_Component> 
     98                <NS_Name>Gravity Wave</NS_Name> 
     99                <NS_Description> Models the effects of anisotropic orography, high drag states, flow 
     100                    blocking and trapped lee waves.</NS_Description> 
     101                <NS_References> 
     102                    <NS_Reference>Milton, S.F. and C.A.Wilson, 1996: The impact of parametrized 
    104103                        sub-grid scale orographic forcing on systematic errors in a global NWP 
    105                         model. Mon. Weath. Rev. 124: 2023-2045. </Reference> 
    106                     <Reference>Gregory, D., G.J. Shutts and J.R. Mitchell, 1998: A new gravity wave 
     104                        model. Mon. Weath. Rev. 124: 2023-2045. </NS_Reference> 
     105                    <NS_Reference>Gregory, D., G.J. Shutts and J.R. Mitchell, 1998: A new gravity wave 
    107106                        drag scheme incorporating anisotropic orography and low level wave breaking: 
    108107                        Impact upon the climate of the UK Meteorological Office Unified Model. 
    109                         Quart. J. Roy. Meteor. Soc. 124: 463-493. </Reference> 
    110                 </References> 
    111             </Component> 
    112             <Component> 
    113                 <Name>Precip and Cloud Scheme</Name> 
    114                 <Description> The large-scale precipitation and cloud scheme is formulated in terms 
     108                        Quart. J. Roy. Meteor. Soc. 124: 463-493. </NS_Reference> 
     109                </NS_References> 
     110            </NS_Component> 
     111            <NS_Component> 
     112                <NS_Name>Precip and Cloud Scheme</NS_Name> 
     113                <NS_Description> The large-scale precipitation and cloud scheme is formulated in terms 
    115114                    of an explicit cloud water variable following Smith (1990). The effective radius 
    116115                    of cloud droplets is a function of cloud water content and droplet number 
    117116                    concentration (Martin et al 1994). Note that this version of the code may differ 
    118                     slightly from those described in these references (Lawrence and Iwi, 2004). </Description> 
    119                 <References> 
    120                     <Reference>Smith, R.N.B, 1990: A scheme for predicting layer clouds and their 
     117                    slightly from those described in these references (Lawrence and Iwi, 2004). </NS_Description> 
     118                <NS_References> 
     119                    <NS_Reference>Smith, R.N.B, 1990: A scheme for predicting layer clouds and their 
    121120                        water content in a general circulation model. Quart. J. Roy. Meteor. Soc. 
    122                         116: 435-460. </Reference> 
    123                     <Reference>Martin, G.M., D.W. Johnson and A. Spice, 1994: The measurement and 
     121                        116: 435-460. </NS_Reference> 
     122                    <NS_Reference>Martin, G.M., D.W. Johnson and A. Spice, 1994: The measurement and 
    124123                        parametrization of effective radius of droplets in warm stratocumulus 
    125                         clouds. J. Atmos. Sci. 51: 1823-1842. </Reference> 
    126                     <Reference>Iwi and Lawrence (2004). A comparison between HadCM3 integrations for 
     124                        clouds. J. Atmos. Sci. 51: 1823-1842. </NS_Reference> 
     125                    <NS_Reference>Iwi and Lawrence (2004). A comparison between HadCM3 integrations for 
    127126                        COAPEC using Beowulf (UM version 4.5) and Cray T3E (UM version 4.4) 
    128                         http://home.badc.rl.ac.uk/iwi/um/downloads/comparison.pdf</Reference> 
    129                 </References> 
    130             </Component> 
    131         </Component> 
    132         <Component> 
    133             <Name>Ocean</Name> 
    134             <Type>Ocean</Type> 
    135             <Description>The oceanic component of HadCM3 has 20 levels with a horizontal resolution 
     127                        http://home.badc.rl.ac.uk/iwi/um/downloads/comparison.pdf</NS_Reference> 
     128                </NS_References> 
     129            </NS_Component> 
     130        </NS_Component> 
     131        <NS_Component> 
     132            <NS_Name>Ocean</NS_Name> 
     133            <NS_ComponentType>Ocean</NS_ComponentType> 
     134            <NS_Description>The oceanic component of HadCM3 has 20 levels with a horizontal resolution 
    136135                of 1.25 x 1.25°. At this resolution it is possible to represent important details in 
    137136                oceanic current structures. Horizontal mixing of tracers uses a version of the Gent 
     
    152151                not resolved in the model. . In order to avoid a global average salinity drift, 
    153152                surface water fluxes are converted to surface salinity fluxes using a constant 
    154                 reference salinity of 35 PSU. </Description> 
    155             <References> 
    156                 <Reference>Gent, P.R. and J.C. McWilliams, 1990: Isopycnal mixing in ocean 
    157                     circulation models. J. Phys. Oceanogr. 20: 150-155. </Reference> 
    158                 <Reference>Kraus, E.B. and J.S. Turner, 1967: A one dimensional model of the 
    159                     seasonal thermocline. Part II. Tellus, 19: 98-105. </Reference> 
    160                 <Reference> Levitus, S. and T.P. Boyer, 1994: World Ocean Atlas 1994, Volume 4: 
     153                reference salinity of 35 PSU. </NS_Description> 
     154            <NS_References> 
     155                <NS_Reference>Gent, P.R. and J.C. McWilliams, 1990: Isopycnal mixing in ocean 
     156                    circulation models. J. Phys. Oceanogr. 20: 150-155. </NS_Reference> 
     157                <NS_Reference>Kraus, E.B. and J.S. Turner, 1967: A one dimensional model of the 
     158                    seasonal thermocline. Part II. Tellus, 19: 98-105. </NS_Reference> 
     159                <NS_Reference> Levitus, S. and T.P. Boyer, 1994: World Ocean Atlas 1994, Volume 4: 
    161160                    Temperature. NOAA/NESDIS E/OC21, US Department of Commerce, Washington, DC, 
    162                     117pp. </Reference> 
    163                 <Reference>Levitus, S., R. Burgett, and T.P. Boyer, 1995: World Ocean Atlas 1994, 
     161                    117pp. </NS_Reference> 
     162                <NS_Reference>Levitus, S., R. Burgett, and T.P. Boyer, 1995: World Ocean Atlas 1994, 
    164163                    Volume 3: Salinity. NOAA/NESDIS E/OC21, US Department of Commerce, Washington, 
    165                     DC, 99pp. </Reference> 
    166                 <Reference>Pacanowski, R.C. and S.G. Philander, 1981: Parametrization of vertical 
    167                     mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11: 1443-1451. </Reference> 
    168                 <Reference>Roether, W., V.M. Roussenov and R.Well, 1994: A tracer study of the 
     164                    DC, 99pp. </NS_Reference> 
     165                <NS_Reference>Pacanowski, R.C. and S.G. Philander, 1981: Parametrization of vertical 
     166                    mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11: 1443-1451. </NS_Reference> 
     167                <NS_Reference>Roether, W., V.M. Roussenov and R.Well, 1994: A tracer study of the 
    169168                    thermohaline circulation of the eastern Mediterranean. In: Ocean Processes in 
    170169                    Climate Dynamics: Global and Mediterranean Example pp.371-394. Eds. P. 
    171                     Malanotte-Rizzoli and A.R. Robinson, Kluwer Academic Press. </Reference> 
    172                 <Reference>Visbeck, M., J. Marshall, T. Haine and M. Spall, 1997: On the 
     170                    Malanotte-Rizzoli and A.R. Robinson, Kluwer Academic Press. </NS_Reference> 
     171                <NS_Reference>Visbeck, M., J. Marshall, T. Haine and M. Spall, 1997: On the 
    173172                    specification of eddy transfer coefficients in coarse resolution ocean 
    174                     circulation models. J. Phys. Oceanogr. 27: 381-402. </Reference> 
    175                 <Reference>Wright, D.K., 1997: A new eddy mixing parametrization and ocean general 
    176                     circulation model. International WOCE newsletter, 26: 27-29. </Reference> 
    177             </References> 
    178         </Component> 
    179         <Component> 
    180             <Name>Sea Ice</Name> 
    181             <Type>Cryosphere</Type> 
    182             <Description> The sea ice model uses a simple thermodynamic scheme including leads and 
     173                    circulation models. J. Phys. Oceanogr. 27: 381-402. </NS_Reference> 
     174                <NS_Reference>Wright, D.K., 1997: A new eddy mixing parametrization and ocean general 
     175                    circulation model. International WOCE newsletter, 26: 27-29. </NS_Reference> 
     176            </NS_References> 
     177        </NS_Component> 
     178        <NS_Component> 
     179            <NS_Name>Sea Ice</NS_Name> 
     180            <NS_ComponentType>Cryosphere</NS_ComponentType> 
     181            <NS_Description> The sea ice model uses a simple thermodynamic scheme including leads and 
    183182                snow-cover. Ice is advected by the surface ocean current, with convergence prevented 
    184183                when the depth exceeds 4 m.There is no explicit representation of iceberg calving, 
    185184                so a prescribed water flux is returned to the ocean at a rate calibrated to balance 
    186185                the net snowfall accumulation on the ice sheets, geographically distributed within 
    187                 regions where icebergs are found.</Description> 
    188             <References> 
    189                 <Reference>Cattle, H. and J. Crossley, 1995: Modelling Arctic climate change. Phil 
    190                     Trans R Soc London A352: 201-213. </Reference> 
    191             </References> 
    192         </Component> 
    193         <Component> 
    194             <Name>Atmos-Ocean Coupler</Name> 
    195             <Type>Coupler</Type> 
    196             <Description>The atmosphere and ocean exchange information once per day. Heat and water 
     186                regions where icebergs are found.</NS_Description> 
     187            <NS_References> 
     188                <NS_Reference>Cattle, H. and J. Crossley, 1995: Modelling Arctic climate change. Phil 
     189                    Trans R Soc London A352: 201-213. </NS_Reference> 
     190            </NS_References> 
     191        </NS_Component> 
     192        <NS_Component> 
     193            <NS_Name>Atmos-Ocean Coupler</NS_Name> 
     194            <NS_ComponentType>Coupler</NS_ComponentType> 
     195            <NS_Description>The atmosphere and ocean exchange information once per day. Heat and water 
    197196                fluxes are conserved exactly in the transfer between their different grids. 
    198             </Description> 
    199         </Component> 
    200     </Model> 
    201     <BoundaryCondition type="Preindustrial"> 
    202         <Description>Green house gases were held at preindustrial levels</Description> 
    203     </BoundaryCondition> 
    204     <BoundaryCondition type="Present Day"> 
    205         <Description>Apart from greenhouse gases, other boundary conditions (solar irradiance 
     197            </NS_Description> 
     198        </NS_Component> 
     199    </NS_Model> 
     200    <NS_BoundaryCondition NS_type="Preindustrial"> 
     201        <NS_Description>Green house gases were held at preindustrial levels</NS_Description> 
     202    </NS_BoundaryCondition> 
     203    <NS_BoundaryCondition NS_type="Present Day"> 
     204        <NS_Description>Apart from greenhouse gases, other boundary conditions (solar irradiance 
    206205            sulpher etc) are present day and not varying as is possible with this 
    207         model.</Description> 
    208     </BoundaryCondition> 
    209     <InitialCondition type="Unknown"> 
    210         <Description>.The initial condition in this run used an initial condition from a previous 
     206        model.</NS_Description> 
     207    </NS_BoundaryCondition> 
     208    <NS_InitialCondition NS_type="Unknown"> 
     209        <NS_Description>.The initial condition in this run used an initial condition from a previous 
    211210            spin up run with a date of 2789. While this date is arbitrary it reflects a greater 
    212211            level of spin-up equilibration than previous long runs of HadCM3. The ocean was at some 
    213212            point initialized directly from the Levitus et al (1994, 1995) observed ocean state at 
    214             rest, with a suitable atmospheric and sea ice state.</Description> 
    215     </InitialCondition> 
    216 </Simulated> 
     213            rest, with a suitable atmospheric and sea ice state.</NS_Description> 
     214    </NS_InitialCondition> 
     215</NS_Simulated> 
  • Discovery_Service/trunk/schema/numsim/v006/NumSim006.xsd

    r211 r212  
    137137        </xs:annotation> 
    138138        <xs:sequence> 
     139            <xs:element name="NS_EnsembleDescription" type="NS_Description" minOccurs="0" maxOccurs="1"/> 
    139140            <xs:element name="NS_EnsembleType" type="NS_EnsembleTypes" minOccurs="1" 
    140141                maxOccurs="unbounded"/> 
Note: See TracChangeset for help on using the changeset viewer.