Changeset 1169 for TI01-discovery/trunk


Ignore:
Timestamp:
13/06/06 15:49:44 (13 years ago)
Author:
hearnsha
Message:

First draft of ocean NumSIM

Location:
TI01-discovery/trunk/schema/numsim/NMM/higem
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • TI01-discovery/trunk/schema/numsim/NMM/higem/HiGEM_HADGEM_6.1_control.xml

    r1149 r1169  
    3030                <NS_Component><!-- Radiation Scheme --> 
    3131                    <NS_Name>Radiation Scheme</NS_Name> 
     32                    <NS_ComponentType>Atmosphere</NS_ComponentType> 
    3233                    <NS_Description>  
    3334                        A general 2-stream radiation code including cloud microphysics. 
     
    184185                </NS_Description> 
    185186                <NS_References> 
    186                     <NS_Reference></NS_Reference> 
     187                    <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</NS_Reference> 
    187188                </NS_References> 
    188                 <NS_Component> 
     189                <NS_Component><!-- tracer advection and diffusion--> 
     190                    <NS_Name>Tracer advection and diffusion</NS_Name> 
     191                    <NS_ComponentType>Ocean</NS_ComponentType> 
     192                    <NS_Description> 
     193                        The advection of active tracers, temperature and salinity, uses a fourth order differencing scheme (Pacanowski and Griffies, 1998) 
     194                        which uses a fourth order estimate of the tracer gradients together with the second order advective fluxes.                       
     195                        The option to use upwind advection in the bottom gridcell at each point avoids instabilities found in high resolution runs. 
     196                        The Griffies diffusion scheme orientates the mixing tensor to lie along isopycnal rather than horizontal sufarces (Griffies et al., 1998). 
     197                        Isopycnal diffusivity is 5.00e+02 m*m/s and is constant with depth. 
     198                        The Gent and McWilliams (GM) Scheme parametrises the effect of mesoscale eddies on tracer transports. 
     199                        The Visbeck scheme allows the diffusivity for the GM scheme to be spatially and temporally variable,  
     200                        so that it can take large values in eddy-generation regions and small values elsewhere.  
     201                        The HADCM4 version of the Visbeck scheme uses large-scale density gradients to pick out eddy-generation regions. 
     202                        The isopycnal diffusivity is tapered as the slope of the isopycnals increases using a hyperbolic tangent function. 
     203                        A scale-selective version of the Gent and McWilliams scheme (Roberts and Marshall 1998) removes small-scale noise from the tracer fields 
     204                        without affecting their large-scale distribution and without causing any mixing across isopycnal surfaces. 
     205                    </NS_Description> 
     206                    <NS_References> 
     207                        <NS_Reference>Pacanowski and Griffies, MOM 3.0 Manual, 1998</NS_Reference> 
     208                        <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p051.pdf</NS_Reference> 
     209                        <NS_Reference>Griffies et al 1998</NS_Reference> 
     210                        <NS_Reference>Roberts and Marshall, 1998</NS_Reference> 
     211                    </NS_References> 
     212                </NS_Component>                 
     213                <NS_Component><!-- Fourier filtering at high latitudes --> 
    189214                    <NS_Name>Filtering</NS_Name> 
    190215                    <NS_ComponentType>Ocean</NS_ComponentType> 
    191216                    <NS_Description> 
    192217                        Fourier filtering is used to decrease the effective resolution of the model at 
    193 high latitudes, allowing a longer timestep to be used. See UMDP 40. Different 
    194 filtered regions can be chosen for tracers and velocity and for the northern 
    195 and southern hemispheres. In the northern hemisphere, filtering starts at 
    196 'First tracer/velocity row in northern hemisphere to be filtered' and goes 
    197 right up to the north pole. The filtering removes scales less than the grid 
    198 scale on the row defined by 'Tracer/velocity row used to define basic zonal 
    199 dimension'. The equator-most row to be filtered in each hemisphere determines 
    200 the minimum effective gridlength retained by the filtering. 
    201                     </NS_Description> 
    202                     <NS_References></NS_References> 
    203                 </NS_Component> 
    204                  
     218                        high latitudes, allowing a longer timestep to be used. See UMDP 40. Different 
     219                        filtered regions can be chosen for tracers and velocity and for the northern 
     220                        and southern hemispheres. In the northern hemisphere, filtering starts at 
     221                        'First tracer/velocity row in northern hemisphere to be filtered' and goes 
     222                        right up to the north pole. The filtering removes scales less than the grid 
     223                        scale on the row defined by 'Tracer/velocity row used to define basic zonal 
     224                        dimension'. The equator-most row to be filtered in each hemisphere determines 
     225                        the minimum effective gridlength retained by the filtering. 
     226                        The first tracer/velocity row in the northern hemisphere: 510/509 
     227                        Tracer/velocity row used to define basic zonal dimensions: 510/509 
     228                        The last tracer/velocity row in the southern hemisphere:34/34 
     229                    </NS_Description> 
     230                    <NS_References> 
     231                        <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</NS_Reference> 
     232                    </NS_References> 
     233                </NS_Component> 
     234                <NS_Component><!-- Mixed layer and vertical diffusion--> 
     235                    <NS_Name>Mixed Layer and vertical diffusion</NS_Name> 
     236                    <NS_ComponentType>Ocean</NS_ComponentType> 
     237                    <NS_Description> 
     238                        A Kraus-Turner (1967) type mixed layer model is used to parameterise the effects of surface generated turbulence.  
     239                        Vertical diffusion is dependent on the Ricardson Number (Peters et al, ?) 
     240                        The quadratic Large scheme calculates the vertical diffusion coefficient in the mixed layer (Large et al 1994) 
     241                        The quadratic Large scheme is applied where the Richardson number is less than 0.3 upto a maximum depth of 80 m. 
     242                    </NS_Description> 
     243                    <NS_References> 
     244                        <NS_Reference>Kraus Turner, 1967</NS_Reference> 
     245                        <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p041.pdf</NS_Reference> 
     246                        <NS_Reference>Peters et al, ?</NS_Reference> 
     247                        <NS_Reference>W.G.Large et al 1994, Oceanic Vertical Mixing : A review and a model 
     248                        with a nonlocal boundary layer parametrisation, Rev Geophys, 32, 363-403.</NS_Reference> 
     249                    </NS_References> 
     250                </NS_Component> 
     251                <NS_Component><!-- Barotropic Solution, Momentum Flux and Diffusion --> 
     252                    <NS_Name>Barotropic Solution, Momentum Flux and Diffusion</NS_Name> 
     253                    <NS_ComponentType>Ocean</NS_ComponentType> 
     254                    <NS_Description>   
     255                        A free-surface barotropic solution is used with Delphus-Delcross smoothing for the surface height field. 
     256                        A modifed Cox scheme is used for calculating velocity fluxes. 
     257                        Horizontal momentum diffusion uses viscosity coeffiecients that are constant in latitude: 0.00. 
     258                        Biharmonic momentum diffusion allows scale-selective damping to be applied to the velocities 
     259                        without affecting the large-scale velocity field. It is useful in helping the removal of grid-scale noise in the velocity field.  
     260                    </NS_Description> 
     261                </NS_Component> 
     262                <NS_Component><!-- Convection --> 
     263                    <NS_Name>Convection</NS_Name> 
     264                    <NS_ComponentType>Ocean</NS_ComponentType> 
     265                    <NS_Description> 
     266                        A Rahmstorf's full convection scheme is used which 
     267                        is guaranteed to produce a profile having complete static stability. 
     268                    </NS_Description> 
     269                </NS_Component> 
     270                <NS_Component><!-- Salinity Control --> 
     271                    <NS_Name>Salinity Control</NS_Name> 
     272                    <NS_Description> 
     273                        There is no reference salinity, instead salinity limits are applied. 
     274                        Upper salinity limit: 4.50000e-02 (psu/1000). 
     275                        Lower salinity limit: 5.00000e-03 (psu/1000). 
     276                    </NS_Description> 
     277                </NS_Component> 
     278                <NS_Component><!-- Ocean straits --> 
     279                    <NS_Name>Ocean Straits</NS_Name> 
     280                    <NS_ComponentType>Ocean</NS_ComponentType> 
     281                    <NS_Description> 
     282                        A generalised strait exchange scheme is used that advects water from a marginal sea into the main                                    
     283                        ocean, with a corresponding return flow. 
     284                        There is 1 strait in this set up with end coordinates (i,j) at (62, 378) and (65, 378). 
     285                    </NS_Description> 
     286                </NS_Component>                 
    205287            </NS_Component> 
    206288            <NS_Component> 
  • TI01-discovery/trunk/schema/numsim/NMM/higem/NMMModel_higem.xml

    r1149 r1169  
    25692569                                        <modificationReason></modificationReason> 
    25702570                                </modifiedFromStandard> 
    2571                                 <references></references> 
     2571                                <references>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</references> 
    25722572                                <parameters> 
    25732573                                        <!-- Filtering included. Specify parameters --> 
     
    27442744                                        <modificationReason></modificationReason> 
    27452745                                </modifiedFromStandard> 
    2746                                 <references></references> 
     2746                                <references> 
     2747                                        <reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p051.pd</reference> 
     2748                                        <reference>Pacanowski and Griffies, MOM 3.0 Manual, 1998</reference> 
     2749                                        <reference>Griffies et al 1998</reference> 
     2750                                        <reference>Roberts and Marshall, 1998</reference> 
     2751                                </references> 
    27472752                                <parameters> 
    27482753                                        <!-- Specify constansts used to calculate along-isopycnal diffusion coefficients--> 
Note: See TracChangeset for help on using the changeset viewer.