Changeset 1169 for TI01-discovery
- Timestamp:
- 13/06/06 15:49:44 (15 years ago)
- Location:
- TI01-discovery/trunk/schema/numsim/NMM/higem
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
TI01-discovery/trunk/schema/numsim/NMM/higem/HiGEM_HADGEM_6.1_control.xml
r1149 r1169 30 30 <NS_Component><!-- Radiation Scheme --> 31 31 <NS_Name>Radiation Scheme</NS_Name> 32 <NS_ComponentType>Atmosphere</NS_ComponentType> 32 33 <NS_Description> 33 34 A general 2-stream radiation code including cloud microphysics. … … 184 185 </NS_Description> 185 186 <NS_References> 186 <NS_Reference> </NS_Reference>187 <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</NS_Reference> 187 188 </NS_References> 188 <NS_Component> 189 <NS_Component><!-- tracer advection and diffusion--> 190 <NS_Name>Tracer advection and diffusion</NS_Name> 191 <NS_ComponentType>Ocean</NS_ComponentType> 192 <NS_Description> 193 The advection of active tracers, temperature and salinity, uses a fourth order differencing scheme (Pacanowski and Griffies, 1998) 194 which uses a fourth order estimate of the tracer gradients together with the second order advective fluxes. 195 The option to use upwind advection in the bottom gridcell at each point avoids instabilities found in high resolution runs. 196 The Griffies diffusion scheme orientates the mixing tensor to lie along isopycnal rather than horizontal sufarces (Griffies et al., 1998). 197 Isopycnal diffusivity is 5.00e+02 m*m/s and is constant with depth. 198 The Gent and McWilliams (GM) Scheme parametrises the effect of mesoscale eddies on tracer transports. 199 The Visbeck scheme allows the diffusivity for the GM scheme to be spatially and temporally variable, 200 so that it can take large values in eddy-generation regions and small values elsewhere. 201 The HADCM4 version of the Visbeck scheme uses large-scale density gradients to pick out eddy-generation regions. 202 The isopycnal diffusivity is tapered as the slope of the isopycnals increases using a hyperbolic tangent function. 203 A scale-selective version of the Gent and McWilliams scheme (Roberts and Marshall 1998) removes small-scale noise from the tracer fields 204 without affecting their large-scale distribution and without causing any mixing across isopycnal surfaces. 205 </NS_Description> 206 <NS_References> 207 <NS_Reference>Pacanowski and Griffies, MOM 3.0 Manual, 1998</NS_Reference> 208 <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p051.pdf</NS_Reference> 209 <NS_Reference>Griffies et al 1998</NS_Reference> 210 <NS_Reference>Roberts and Marshall, 1998</NS_Reference> 211 </NS_References> 212 </NS_Component> 213 <NS_Component><!-- Fourier filtering at high latitudes --> 189 214 <NS_Name>Filtering</NS_Name> 190 215 <NS_ComponentType>Ocean</NS_ComponentType> 191 216 <NS_Description> 192 217 Fourier filtering is used to decrease the effective resolution of the model at 193 high latitudes, allowing a longer timestep to be used. See UMDP 40. Different 194 filtered regions can be chosen for tracers and velocity and for the northern 195 and southern hemispheres. In the northern hemisphere, filtering starts at 196 'First tracer/velocity row in northern hemisphere to be filtered' and goes 197 right up to the north pole. The filtering removes scales less than the grid 198 scale on the row defined by 'Tracer/velocity row used to define basic zonal 199 dimension'. The equator-most row to be filtered in each hemisphere determines 200 the minimum effective gridlength retained by the filtering. 201 </NS_Description> 202 <NS_References></NS_References> 203 </NS_Component> 204 218 high latitudes, allowing a longer timestep to be used. See UMDP 40. Different 219 filtered regions can be chosen for tracers and velocity and for the northern 220 and southern hemispheres. In the northern hemisphere, filtering starts at 221 'First tracer/velocity row in northern hemisphere to be filtered' and goes 222 right up to the north pole. The filtering removes scales less than the grid 223 scale on the row defined by 'Tracer/velocity row used to define basic zonal 224 dimension'. The equator-most row to be filtered in each hemisphere determines 225 the minimum effective gridlength retained by the filtering. 226 The first tracer/velocity row in the northern hemisphere: 510/509 227 Tracer/velocity row used to define basic zonal dimensions: 510/509 228 The last tracer/velocity row in the southern hemisphere:34/34 229 </NS_Description> 230 <NS_References> 231 <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</NS_Reference> 232 </NS_References> 233 </NS_Component> 234 <NS_Component><!-- Mixed layer and vertical diffusion--> 235 <NS_Name>Mixed Layer and vertical diffusion</NS_Name> 236 <NS_ComponentType>Ocean</NS_ComponentType> 237 <NS_Description> 238 A Kraus-Turner (1967) type mixed layer model is used to parameterise the effects of surface generated turbulence. 239 Vertical diffusion is dependent on the Ricardson Number (Peters et al, ?) 240 The quadratic Large scheme calculates the vertical diffusion coefficient in the mixed layer (Large et al 1994) 241 The quadratic Large scheme is applied where the Richardson number is less than 0.3 upto a maximum depth of 80 m. 242 </NS_Description> 243 <NS_References> 244 <NS_Reference>Kraus Turner, 1967</NS_Reference> 245 <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p041.pdf</NS_Reference> 246 <NS_Reference>Peters et al, ?</NS_Reference> 247 <NS_Reference>W.G.Large et al 1994, Oceanic Vertical Mixing : A review and a model 248 with a nonlocal boundary layer parametrisation, Rev Geophys, 32, 363-403.</NS_Reference> 249 </NS_References> 250 </NS_Component> 251 <NS_Component><!-- Barotropic Solution, Momentum Flux and Diffusion --> 252 <NS_Name>Barotropic Solution, Momentum Flux and Diffusion</NS_Name> 253 <NS_ComponentType>Ocean</NS_ComponentType> 254 <NS_Description> 255 A free-surface barotropic solution is used with Delphus-Delcross smoothing for the surface height field. 256 A modifed Cox scheme is used for calculating velocity fluxes. 257 Horizontal momentum diffusion uses viscosity coeffiecients that are constant in latitude: 0.00. 258 Biharmonic momentum diffusion allows scale-selective damping to be applied to the velocities 259 without affecting the large-scale velocity field. It is useful in helping the removal of grid-scale noise in the velocity field. 260 </NS_Description> 261 </NS_Component> 262 <NS_Component><!-- Convection --> 263 <NS_Name>Convection</NS_Name> 264 <NS_ComponentType>Ocean</NS_ComponentType> 265 <NS_Description> 266 A Rahmstorf's full convection scheme is used which 267 is guaranteed to produce a profile having complete static stability. 268 </NS_Description> 269 </NS_Component> 270 <NS_Component><!-- Salinity Control --> 271 <NS_Name>Salinity Control</NS_Name> 272 <NS_Description> 273 There is no reference salinity, instead salinity limits are applied. 274 Upper salinity limit: 4.50000e-02 (psu/1000). 275 Lower salinity limit: 5.00000e-03 (psu/1000). 276 </NS_Description> 277 </NS_Component> 278 <NS_Component><!-- Ocean straits --> 279 <NS_Name>Ocean Straits</NS_Name> 280 <NS_ComponentType>Ocean</NS_ComponentType> 281 <NS_Description> 282 A generalised strait exchange scheme is used that advects water from a marginal sea into the main 283 ocean, with a corresponding return flow. 284 There is 1 strait in this set up with end coordinates (i,j) at (62, 378) and (65, 378). 285 </NS_Description> 286 </NS_Component> 205 287 </NS_Component> 206 288 <NS_Component> -
TI01-discovery/trunk/schema/numsim/NMM/higem/NMMModel_higem.xml
r1149 r1169 2569 2569 <modificationReason></modificationReason> 2570 2570 </modifiedFromStandard> 2571 <references> </references>2571 <references>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</references> 2572 2572 <parameters> 2573 2573 <!-- Filtering included. Specify parameters --> … … 2744 2744 <modificationReason></modificationReason> 2745 2745 </modifiedFromStandard> 2746 <references></references> 2746 <references> 2747 <reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p051.pd</reference> 2748 <reference>Pacanowski and Griffies, MOM 3.0 Manual, 1998</reference> 2749 <reference>Griffies et al 1998</reference> 2750 <reference>Roberts and Marshall, 1998</reference> 2751 </references> 2747 2752 <parameters> 2748 2753 <!-- Specify constansts used to calculate along-isopycnal diffusion coefficients-->
Note: See TracChangeset
for help on using the changeset viewer.