Changeset 1149 for TI01-discovery
- Timestamp:
- 09/06/06 16:27:47 (15 years ago)
- Location:
- TI01-discovery/trunk/schema/numsim/NMM/higem
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
TI01-discovery/trunk/schema/numsim/NMM/higem/HiGEM_HADGEM_6.1_control.xml
r1089 r1149 17 17 <NS_Reference>http://www2.met-office.gov.uk/research/nwp/publications/papers/unified_model/umdp15_v6.0.pdf</NS_Reference> 18 18 </NS_References> 19 <NS_Component> 19 <NS_Component><!-- ATMOSPHERE --> 20 20 <NS_Name>Atmosphere</NS_Name> 21 21 <NS_ComponentType>Atmosphere</NS_ComponentType> 22 <NS_Description> 23 The atmospheric component of HiGEM has 38 vertical levels with a horizontal24 resolution of 1.25 degrees of latitude by 1.65 degrees of longitude, which25 produces a global grid of 288 x 217 grid cells. This is equivalent to a surface26 resolution of about 139 km x 184 km at the Equator, reducing to 98 km x 184km22 <NS_Description><!-- SPACE AND TIME --> 23 The atmospheric component of HiGEM has 38 vertical levels 24 with a horizontal resolution of 1.25 degrees of latitude by 0.83 degrees of longitude, 25 which produces a global grid of 288 x 217 grid cells. This is equivalent to a surface 26 resolution of about 139 km x 92 km at the Equator, reducing to 98 km x 92 km 27 27 at 45 degrees of latitude (comparable to a spectral resolution of Nblah). 28 28 The atmospheric timestep period is 20 minutes (72 timesteps per 1 days). 29 </NS_Description> 30 <NS_Component> 29 </NS_Description> 30 <NS_Component><!-- Radiation Scheme --> 31 31 <NS_Name>Radiation Scheme</NS_Name> 32 32 <NS_Description> … … 36 36 The radiative effects of CO2 and ozone are explicitly represented as well as oxygen, methane, N2O, CFC-11 and CFC-12. 37 37 The LW and SW radiative effects of climatological distributions of sulphate, seasalt, soot and biomass aerosols are included. 38 Includingcloud area parameterisation produces an Area Cloud Fraction which replaces the bulk value used in the radiation code.38 A cloud area parameterisation produces an Area Cloud Fraction which replaces the bulk value used in the radiation code. 39 39 Mixed phase clouds containing both ice and water are segregated into separate sub-clouds for radiation calculations. 40 40 </NS_Description> … … 46 46 </NS_References> 47 47 </NS_Component> 48 <NS_Component> 48 <NS_Component><!-- Land Surface Scheme --> 49 49 <NS_Name>Land Surface Scheme</NS_Name> 50 50 <NS_ComponentType>LandSurface</NS_ComponentType> … … 63 63 </NS_References> 64 64 </NS_Component> 65 <NS_Component> 66 <NS_Name> boundary layer scheme</NS_Name>65 <NS_Component><!-- Boundary Layer Scheme --> 66 <NS_Name>Boundary Layer Scheme</NS_Name> 67 67 <NS_ComponentType>Atmosphere</NS_ComponentType> 68 68 <NS_Description> 69 69 The boundary layer scheme explicitly parameterises the top-of-mixed-layer entrainment. 70 Uses a formulation of the surface exchange coefficients based directly on Monin-Obukhov stability functions.71 Uses a newsubgrid diagnosis of cloud-base height in order to improve the accuracy of the buoyancy flux integral72 used to diagnose the depth of mixing in stratocumulus clouds.73 The scheme splits the radiative heating increments into separate LW and SW contributions.74 The boundary layeruses a Richardson number based mixing scheme and orographic roughness fields.70 It uses a formulation of the surface exchange coefficients based directly on Monin-Obukhov stability functions. 71 It uses a subgrid diagnosis of cloud-base height in order to improve the accuracy of the buoyancy flux integral 72 which is used to diagnose the depth of mixing in stratocumulus clouds. 73 The boundary layer scheme splits the radiative heating increments into separate LW and SW contributions. 74 It uses a Richardson number based mixing scheme and orographic roughness fields. 75 75 The scheme accounts for the radiative coupling and the thermal capacity of the vegetation canopy. 76 76 </NS_Description> … … 83 83 </NS_Reference> 84 84 </NS_References> 85 </NS_Component> 86 <NS_Component> 85 </NS_Component> 86 <NS_Component><!-- Convection Scheme --> 87 87 <NS_Name>Convection Scheme</NS_Name> 88 88 <NS_ComponentType>Atmosphere</NS_ComponentType> … … 100 100 </NS_References> 101 101 </NS_Component> 102 <NS_Component> 103 <NS_Name>Gravity Wave</NS_Name> 104 <NS_ComponentType>Atmosphere</NS_ComponentType> 105 <NS_Description> 106 Orographic gravitity wave scheme including flow blocking. 107 The gravity wave constant is 1.00e+05 and defines the magnitude of the parametrized response. 108 The critical Froude number is 4.00 and determines the proportion of that drag attributed to flow blocking 109 and gravity wave drag respectively. 102 <NS_Component><!-- Gravity Wave Scheme --> 103 <NS_Name>Gravity Wave Scheme</NS_Name> 104 <NS_ComponentType>Atmosphere</NS_ComponentType> 105 <NS_Description> 106 The orographic gravitity wave scheme also includes flow blocking. 107 The gravity wave constant is 1.00e+05 and defines the magnitude of the parametrized response. 108 The critical Froude number is 4.00 and determines the proportion of that drag attributed to flow blocking and gravity wave drag respectively. 110 109 The spectral gravity wave scheme is not used. 111 110 </NS_Description> … … 117 116 </NS_References> 118 117 </NS_Component> 119 <NS_Component> 120 <NS_Name>Precip and Cloud Scheme</NS_Name>118 <NS_Component><!-- Precipitation and Cloud Scheme --> 119 <NS_Name>Precipitation and Cloud Scheme</NS_Name> 121 120 <NS_ComponentType>Atmosphere</NS_ComponentType> 122 121 <NS_Description> The large scale precipitation scheme contains a full microphysical calculation of the cloud phase and 123 122 generation of precipitation with water vapour, cloud liquid water and ice particle content as prognostic variables. 124 123 Microphysical processes are treated as transfer terms between water vapour, liquid, ice, and rain. 125 In the 3C scheme the fraction of cloud ice content that is pristine ice crystals and snow aggregate particles are treated124 The fraction of cloud ice content that is pristine ice crystals and snow aggregate particles are treated 126 125 seperately in the microphysical transfer terms. 127 126 Condensation can occur before grid scale supersaturation and the vapour is condensed to cloud water. 128 127 The conversion from vapour to liquid or frozen cloud water is reversible. 129 INCLUDINGRHcrit parametrization causes the cloud scheme to use 3D diagnosed critical relative humidity.130 INCLUDINGcloud area parametrization produces an Area Cloud Fraction which replaces the Bulk value in much of the radiation code.128 A RHcrit parametrization causes the cloud scheme to use 3D diagnosed critical relative humidity. 129 A cloud area parametrization produces an Area Cloud Fraction which replaces the Bulk value in much of the radiation code. 131 130 </NS_Description> 132 131 <NS_References> … … 136 135 </NS_References> 137 136 </NS_Component> 138 <NS_Component> 137 <NS_Component><!-- Advection and Diffusion --> 139 138 <NS_Name>Advection and Diffusion</NS_Name> 140 139 <NS_ComponentType>Atmosphere</NS_ComponentType> … … 152 151 </NS_References> 153 152 </NS_Component> 154 <NS_Component> 153 <NS_Component><!-- Aerosols --> 155 154 <NS_Name>Aerosols</NS_Name> 156 155 <NS_ComponentType>Atmosphere</NS_ComponentType> 157 156 <NS_Description> 158 Aerosol parameterisation includes a sulphur cycle, soot scheme and biomass aerosol scheme.157 The aerosol parameterisation includes a sulphur cycle, soot scheme and biomass aerosol scheme. 159 158 The sulphur cycle includes SO2 emissions from the surface, chimneys and volcanoes. 160 159 The sulphur cycle also uses an interactive dimethyl sulphide scheme. … … 162 161 </NS_Description> 163 162 </NS_Component> 164 <NS_Component> 163 <NS_Component><!-- Rivers --> 165 164 <NS_Name>Rivers</NS_Name> 166 165 <NS_ComponentType>LandSurface</NS_ComponentType> … … 171 170 </NS_Component> 172 171 </NS_Component> 172 <!-- OCEAN --> 173 173 <NS_Component> 174 174 <NS_Name>Ocean</NS_Name> 175 175 <NS_ComponentType>Ocean</NS_ComponentType> 176 <NS_Description></NS_Description> 176 <NS_Description><!-- SPACE AND TIME --> 177 The oceanic component of HiGEM has 40 vertical levels with 178 a horizontal resolution of 0.333 degrees of latitude by 0.333 degrees of longitude, 179 which produces a global grid of 1082 x 540 grid cells. This is equivalent to a surface 180 resolution of about 37 km x 37 km at the Equator, reducing to 26 km x 37 km 181 at 45 degrees of latitude (comparable to a spectral resolution of Nblah). 182 The atmospheric timestep period is 20 minutes (72 timesteps per 1 days). 183 The ocean GCM includes a polar island as standard. 184 </NS_Description> 177 185 <NS_References> 178 186 <NS_Reference></NS_Reference> 179 187 </NS_References> 188 <NS_Component> 189 <NS_Name>Filtering</NS_Name> 190 <NS_ComponentType>Ocean</NS_ComponentType> 191 <NS_Description> 192 Fourier filtering is used to decrease the effective resolution of the model at 193 high latitudes, allowing a longer timestep to be used. See UMDP 40. Different 194 filtered regions can be chosen for tracers and velocity and for the northern 195 and southern hemispheres. In the northern hemisphere, filtering starts at 196 'First tracer/velocity row in northern hemisphere to be filtered' and goes 197 right up to the north pole. The filtering removes scales less than the grid 198 scale on the row defined by 'Tracer/velocity row used to define basic zonal 199 dimension'. The equator-most row to be filtered in each hemisphere determines 200 the minimum effective gridlength retained by the filtering. 201 </NS_Description> 202 <NS_References></NS_References> 203 </NS_Component> 204 180 205 </NS_Component> 181 206 <NS_Component> -
TI01-discovery/trunk/schema/numsim/NMM/higem/NMMModel_higem.xml
r1108 r1149 444 444 <!-- *END GENERAL PHYSICS CONSTANTS* --> 445 445 <!-- *BEGIN RADIATION SHORTWAVE* --> 446 <scienceProperty> 446 <scienceProperty><!-- radiation - shortwave --> 447 447 <standardName parentList="CF">radiation - shortwave</standardName> 448 448 <localName>A01_3A</localName> … … 453 453 <references> 454 454 <reference> 455 JM Edwards, Slingo A, 1996:455 Edwards JM, Slingo A, 1996: 456 456 Studies with a flexible new radiation code .1. Choosing a configuration for a large-scale model 457 Q UARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 122(531) 689-719457 Quarterly Journal of the Royal Meteorological Society, 122(531) 689-719 458 458 </reference> 459 459 <reference> 460 JA. CURRY, SCHRAMM JL, EBERT EE. 1995:460 CURRY JA, SCHRAMM JL, EBERT EE. 1995: 461 461 SEA-ICE ALBEDO CLIMATE FEEDBACK MECHANISM 462 462 JOURNAL OF CLIMATE 8 (2): 240-247 … … 509 509 </forcing> 510 510 </scienceProperty> 511 <scienceProperty> 511 <scienceProperty><!-- 2-stream SW radiation --> 512 512 <standardName parentList="UMUI">2-stream SW radiation</standardName> 513 513 <localName>A01_3A_2Stream</localName> … … 596 596 <!-- *END RADIATION SHORTWAVE* --> 597 597 <!-- *BEGIN RADIATION LONGWAVE* --> 598 <scienceProperty> 598 <scienceProperty><!-- radiation - longwave --> 599 599 <standardName parentList="CF">radiation - longwave</standardName> 600 600 <localName>A02_3A</localName> … … 622 622 </forcing> 623 623 </scienceProperty> 624 <scienceProperty> 624 <scienceProperty><!-- 2-streawm LW radiation --> 625 625 <standardName parentList="UMUI">2-stream LW radiation</standardName> 626 626 <localName>A02_3A_2Stream</localName> … … 1303 1303 <!-- *END ENERGY ADJUSTMENT* --> 1304 1304 <!-- *BEGIN AEROSOLS* --> 1305 <scienceProperty> 1305 <scienceProperty><!-- aerosols --> 1306 1306 <standardName parentList="CF">aerosols</standardName> 1307 1307 <localName>A17_2A</localName> … … 1341 1341 </forcing> 1342 1342 </scienceProperty> 1343 <scienceProperty> 1343 <scienceProperty><!-- sulphur --> 1344 1344 <standardName parentList="UMUI">sulphur</standardName> 1345 1345 <localName>A17_2A_SULP</localName> … … 1567 1567 </forcing> 1568 1568 </scienceProperty> 1569 <scienceProperty> 1569 <scienceProperty><!-- soot --> 1570 1570 <standardName parentList="UMUI">soot</standardName> 1571 1571 <localName>A17_2A_SOOT</localName> … … 1630 1630 </forcing> 1631 1631 </scienceProperty> 1632 <scienceProperty> 1632 <scienceProperty><!-- biomass --> 1633 1633 <standardName parentList="UMUI">biomass aerosol</standardName> 1634 1634 <localName>A17_2A_BIOM</localName> … … 1708 1708 </forcing> 1709 1709 </scienceProperty> 1710 <scienceProperty> 1710 <scienceProperty><!-- aerosol effects --> 1711 1711 <standardName parentList="UMUI">aerosol effects</standardName> 1712 1712 <localName>A17_2A_AERO_FX</localName> … … 1794 1794 <!-- *END DATA ASSIMILATION* --> 1795 1795 <!-- *BEGIN VEGETATION* --> 1796 <scienceProperty> 1796 <scienceProperty><!-- vegetation distribution --> 1797 1797 <standardName parentList="CF">vegetation distribution</standardName> 1798 1798 <localName>A19_1A</localName> … … 1812 1812 </forcing> 1813 1813 </scienceProperty> 1814 <scienceProperty> 1814 <scienceProperty><!-- vegetation settings --> 1815 1815 <standardName parentList="UMUI">vegetation settings</standardName> 1816 1816 <localName>A19_1A_VEGA</localName> … … 1847 1847 </forcing> 1848 1848 </scienceProperty> 1849 <scienceProperty> 1849 <scienceProperty><!-- vegetation parametrization --> 1850 1850 <standardName parentList="UMUI">vegetation parametrization</standardName> 1851 1851 <localName>A19_1A_VFRAC</localName> … … 1933 1933 </forcing> 1934 1934 </scienceProperty> 1935 <scienceProperty> 1935 <scienceProperty><!-- soil --> 1936 1936 <standardName parentList="UMUI">soil</standardName> 1937 1937 <localName>A19_1A_SOIL</localName> … … 2013 2013 </forcing> 2014 2014 </scienceProperty> 2015 <scienceProperty> 2015 <scienceProperty><!-- vegetation disturbance --> 2016 2016 <standardName parentList="UMUI">vegetation disturbance</standardName> 2017 2017 <localName>A19_1A_DIST</localName> … … 2414 2414 <ScienceProperties> 2415 2415 <!-- *BEGIN SPACE AND TIME* --> 2416 <scienceProperty> 2416 <scienceProperty><!-- Horizontal --> 2417 2417 <standardName parentList="UMUI">horizontal</standardName> 2418 2418 <localName>Ocean_horizontal</localName> … … 2453 2453 </parameters> 2454 2454 </scienceProperty> 2455 <scienceProperty> 2455 <scienceProperty><!-- Vertical --> 2456 2456 <standardName parentList="UMUI">vertical</standardName> 2457 2457 <localName>Ocean_vertical</localName> … … 2476 2476 </parameters> 2477 2477 </scienceProperty> 2478 <scienceProperty> 2478 <scienceProperty><!-- Time Step --> 2479 2479 <standardName parentList="UMUI">time stepping</standardName> 2480 2480 <localName>Ocean_timestep</localName>
Note: See TracChangeset
for help on using the changeset viewer.