source: TI01-discovery/trunk/schema/numsim/tags/NumSimV006/HADCM3 PUM 4.5 Beowulf.xml @ 700

Subversion URL: PUM 4.5 Beowulf.xml@700
Revision 700, 15.6 KB checked in by lawrence, 14 years ago (diff)

Tagging NumSimV006 into subversion (this is hopefully the cvs version
with all binary problems sorted).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
1<?xml version="1.0" encoding="UTF-8"?>
2<NS_Simulated xmlns:xsi=""
3    xsi:noNamespaceSchemaLocation="">
4    <!-- Note that this is a handcoded example XML file which should not be regarded as
5    authoratative about the COAPEC 500 year run, Bryan Lawrence, September 2005 -->
6    <NS_Description>This is a 500 year HadCM3 control integration performed with UM version 4.5 on a
7        Linux Beowulf Cluster for the COAPEC programme. It is intended for use as a control
8        integration for perturbation experiments performed on the Beowulf cluster "Lewis" on which
9        it was run, and also for other statistical studies. This run is a 64-bit precision run. No
10        air-sea flux correction was used although a salinity correction was imposed.</NS_Description>
11    <NS_Model>
12        <NS_Name>HadCM3 PUM V4.5 COAPEC Beowulf</NS_Name>
13        <NS_Category>GCM</NS_Category>
14        <NS_RelatedModel>
15            <NS_URI></NS_URI>
16                <NS_Relationship>This version was slightly modified from the Met Office Cray version to run
17                in the beowulf environment and is V4.5 (cf V4.4 for the original HadCM3). Amongst
18                the key physics differences:In the atmosphere: updated spectral coefficients for
19                longwave radiation, a 3-dimensional CO field, and an accurate treatment of
20                precipitation phase change; in the ocean, the Griffies isopycnal diffusion scheme
21                replacing the older Redi scheme, and a new parameterisation of Mediterranean and
22                Hudson bay outflow.See also Lawrence and Iwi for other subtle differences.
23                </NS_Relationship>
24        </NS_RelatedModel>
25        <NS_References>
26            <NS_Reference>Iwi and Lawrence (2004). A comparison between HadCM3 integrations for COAPEC
27                using Beowulf (UM version 4.5) and Cray T3E (UM version 4.4)
28      </NS_Reference>
29                <NS_Reference>Gordon, C., C. Cooper, C.A. Senior, H. Banks, J.M. Gregory, T.C. Johns,
30                J.F.B. Mitchell and R.A. Wood, 2000: The simulation of SST, sea ice extents and
31                ocean heat transports in a version of the Hadley Centre coupled model without flux
32                adjustments. Climate Dynamics 16: 147-168. </NS_Reference>
33        </NS_References>
34        <NS_Component>
35            <NS_Name>Atmosphere</NS_Name>
36            <NS_ComponentType>Atmosphere</NS_ComponentType>
37            <NS_Description>The atmospheric component of HadCM3 has 19 levels with a horizontal
38                resolution of 2.5° of latitude by 3.75° of longitude, which produces a global grid
39                of 96 x 73 grid cells. This is equivalent to a surface resolution of about 417 km x
40                278 km at the Equator, reducing to 295 km x 278 km at 45° of latitude (comparable to
41                a spectral resolution of T42).Note that while the atmospheric component of the model
42                also optionally allows the emission, transport, oxidation and deposition of sulphur
43                compounds (dimethylsulphide, sulphur dioxide and ammonium sulphate) to be simulated
44                interactively permitting the direct and indirect forcing effects of sulphate
45                aerosols to be modelled given scenarios for sulphur emissions and oxidants, this
46                option was not used in this integration.</NS_Description>
47            <NS_RelatedModel>
48                <NS_URI>Need a URI to "official" HADAM3</NS_URI>
49                <NS_Relationship>Portable Version</NS_Relationship>
50            </NS_RelatedModel>
51            <NS_References>
52                <NS_Reference>Pope, V. D., M. L. Gallani, P. R. Rowntree and R. A. Stratton, 2000: The
53                    impact of new physical parametrizations in the Hadley Centre climate model --
54                    HadAM3. Climate Dynamics, 16: 123-146. </NS_Reference>
55            </NS_References>
56            <NS_Component>
57                <NS_Name>Radiation Scheme</NS_Name>
58                <NS_Description> 6 and 8 spectral bands in the solar (shortwave) and terrestrial
59                    thermal (longwave) wavelengths. The radiative effects of minor greenhouse gases
60                    as well as CO2, water vapour and ozone are explicitly represented (Edwards and
61                    Slingo, 1996). A simple parametrization of background aerosol (Cusack et al
62                    1998) is also included.</NS_Description>
63                <NS_References>
64                    <NS_Reference>Edwards, J.M. and A. Slingo, 1996: Sudies with a flexible new
65                        radiation code. I: Choosing a configuration for a large scale model. Quart.
66                        J. Roy. Meteor. Soc. 122: 689-719. </NS_Reference>
67                    <NS_Reference>Cusack S., A. Slingo, J.M. Edwards, and M. Wild, 1998: The radiative
68                        impact of a simple aerosol climatology on the Hadley Centre GCM. Quart. J.
69                        Roy. Meteor. Soc. 124: 2517-2526. </NS_Reference>
70                </NS_References>
71            </NS_Component>
72            <NS_Component>
73                <NS_Name>Land Surface Scheme</NS_Name>
74                <NS_ComponentType>LandSurface</NS_ComponentType>
75                <NS_Description>Includes a representation of the freezing and melting of soil moisture,
76                    as well as surface runoff and soil drainage; the formulation of evaporation
77                    includes the dependence of stomatal resistance on temperature, vapour pressure
78                    and CO2 concentration. The surface albedo is a function of snow depth,
79                    vegetation type and also of temperature over snow and ice.</NS_Description>
80                <NS_References>
81                    <NS_Reference>Cox, P., R. Betts, C. Bunton, R. Essery, P.R. Rowntree, and J. Smith,
82                        1999: The impact of new land surface physics on the GCM simulation of
83                        climate and climate sensitivity. Climate Dynamics 15: 183-203. </NS_Reference>
84                </NS_References>
85            </NS_Component>
86            <NS_Component>
87                <NS_Name>Convection Scheme</NS_Name>
88                <NS_Description> A penetrative convective scheme is used, modified to include an
89                    explicit down-draught, and the direct impact of convection on momentum. </NS_Description>
90                <NS_References>
91                    <NS_Reference>Gregory and Rowntree, 1990? </NS_Reference>
92                    <NS_Reference>Gregory, D., R. Kershaw and P.M. Inness, 1997: Parametrization of
93                        momentum transport by convection. II: tests in single column and general
94                        circulation models. Quart. J. Roy. Meteor. Soc. 123: 1153-1183. </NS_Reference>
95                </NS_References>
96            </NS_Component>
97            <NS_Component>
98                <NS_Name>Gravity Wave</NS_Name>
99                <NS_Description> Models the effects of anisotropic orography, high drag states, flow
100                    blocking and trapped lee waves.</NS_Description>
101                <NS_References>
102                    <NS_Reference>Milton, S.F. and C.A.Wilson, 1996: The impact of parametrized
103                        sub-grid scale orographic forcing on systematic errors in a global NWP
104                        model. Mon. Weath. Rev. 124: 2023-2045. </NS_Reference>
105                    <NS_Reference>Gregory, D., G.J. Shutts and J.R. Mitchell, 1998: A new gravity wave
106                        drag scheme incorporating anisotropic orography and low level wave breaking:
107                        Impact upon the climate of the UK Meteorological Office Unified Model.
108                        Quart. J. Roy. Meteor. Soc. 124: 463-493. </NS_Reference>
109                </NS_References>
110            </NS_Component>
111            <NS_Component>
112                <NS_Name>Precip and Cloud Scheme</NS_Name>
113                <NS_Description> The large-scale precipitation and cloud scheme is formulated in terms
114                    of an explicit cloud water variable following Smith (1990). The effective radius
115                    of cloud droplets is a function of cloud water content and droplet number
116                    concentration (Martin et al 1994). Note that this version of the code may differ
117                    slightly from those described in these references (Lawrence and Iwi, 2004). </NS_Description>
118                <NS_References>
119                    <NS_Reference>Smith, R.N.B, 1990: A scheme for predicting layer clouds and their
120                        water content in a general circulation model. Quart. J. Roy. Meteor. Soc.
121                        116: 435-460. </NS_Reference>
122                    <NS_Reference>Martin, G.M., D.W. Johnson and A. Spice, 1994: The measurement and
123                        parametrization of effective radius of droplets in warm stratocumulus
124                        clouds. J. Atmos. Sci. 51: 1823-1842. </NS_Reference>
125                    <NS_Reference>Iwi and Lawrence (2004). A comparison between HadCM3 integrations for
126                        COAPEC using Beowulf (UM version 4.5) and Cray T3E (UM version 4.4)
127              </NS_Reference>
128                </NS_References>
129            </NS_Component>
130        </NS_Component>
131        <NS_Component>
132            <NS_Name>Ocean</NS_Name>
133            <NS_ComponentType>Ocean</NS_ComponentType>
134            <NS_Description>The oceanic component of HadCM3 has 20 levels with a horizontal resolution
135                of 1.25 x 1.25°. At this resolution it is possible to represent important details in
136                oceanic current structures. Horizontal mixing of tracers uses a version of the Gent
137                and McWilliams (1990) adiabatic diffusion scheme with a variable thickness
138                diffusivity (Wright 1997; Visbeck et al. 1997) is used. There is no explicit
139                horizontal diffusion of tracers. The along-isopycnal diffusivity of tracers is 1000
140                m2 s-1 and horizontal momentum viscosity varies with latitude between 3000 and 6000
141                m2 s-1 at the poles and equator respectively. Near-surface vertical mixing is
142                parametrized partly by a Kraus-Turner mixed layer scheme for tracers (Kraus and
143                Turner 1967), and a K-theory scheme (Pacanowski and Philander 1981) for momentum.
144                Below the upper layers the vertical diffusivity is an increasing function of depth
145                only. Convective adjustment is modified in the region of the Denmark Straits and
146                Iceland-Scotland ridge better to represent down-slope mixing of the overflow water,
147                which is allowed to find its proper level of neutral buoyancy rather than mixing
148                vertically with surrounding water masses. The scheme is based on Roether et al
149                (1994). Mediterranean water is partially mixed with Atlantic water across the Strait
150                of Gibraltar as a simple representation of water mass exchange since the channel is
151                not resolved in the model. . In order to avoid a global average salinity drift,
152                surface water fluxes are converted to surface salinity fluxes using a constant
153                reference salinity of 35 PSU. </NS_Description>
154            <NS_References>
155                <NS_Reference>Gent, P.R. and J.C. McWilliams, 1990: Isopycnal mixing in ocean
156                    circulation models. J. Phys. Oceanogr. 20: 150-155. </NS_Reference>
157                <NS_Reference>Kraus, E.B. and J.S. Turner, 1967: A one dimensional model of the
158                    seasonal thermocline. Part II. Tellus, 19: 98-105. </NS_Reference>
159                <NS_Reference> Levitus, S. and T.P. Boyer, 1994: World Ocean Atlas 1994, Volume 4:
160                    Temperature. NOAA/NESDIS E/OC21, US Department of Commerce, Washington, DC,
161                    117pp. </NS_Reference>
162                <NS_Reference>Levitus, S., R. Burgett, and T.P. Boyer, 1995: World Ocean Atlas 1994,
163                    Volume 3: Salinity. NOAA/NESDIS E/OC21, US Department of Commerce, Washington,
164                    DC, 99pp. </NS_Reference>
165                <NS_Reference>Pacanowski, R.C. and S.G. Philander, 1981: Parametrization of vertical
166                    mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11: 1443-1451. </NS_Reference>
167                <NS_Reference>Roether, W., V.M. Roussenov and R.Well, 1994: A tracer study of the
168                    thermohaline circulation of the eastern Mediterranean. In: Ocean Processes in
169                    Climate Dynamics: Global and Mediterranean Example pp.371-394. Eds. P.
170                    Malanotte-Rizzoli and A.R. Robinson, Kluwer Academic Press. </NS_Reference>
171                <NS_Reference>Visbeck, M., J. Marshall, T. Haine and M. Spall, 1997: On the
172                    specification of eddy transfer coefficients in coarse resolution ocean
173                    circulation models. J. Phys. Oceanogr. 27: 381-402. </NS_Reference>
174                <NS_Reference>Wright, D.K., 1997: A new eddy mixing parametrization and ocean general
175                    circulation model. International WOCE newsletter, 26: 27-29. </NS_Reference>
176            </NS_References>
177        </NS_Component>
178        <NS_Component>
179            <NS_Name>Sea Ice</NS_Name>
180            <NS_ComponentType>Cryosphere</NS_ComponentType>
181            <NS_Description> The sea ice model uses a simple thermodynamic scheme including leads and
182                snow-cover. Ice is advected by the surface ocean current, with convergence prevented
183                when the depth exceeds 4 m.There is no explicit representation of iceberg calving,
184                so a prescribed water flux is returned to the ocean at a rate calibrated to balance
185                the net snowfall accumulation on the ice sheets, geographically distributed within
186                regions where icebergs are found.</NS_Description>
187            <NS_References>
188                <NS_Reference>Cattle, H. and J. Crossley, 1995: Modelling Arctic climate change. Phil
189                    Trans R Soc London A352: 201-213. </NS_Reference>
190            </NS_References>
191        </NS_Component>
192        <NS_Component>
193            <NS_Name>Atmos-Ocean Coupler</NS_Name>
194            <NS_ComponentType>Coupler</NS_ComponentType>
195            <NS_Description>The atmosphere and ocean exchange information once per day. Heat and water
196                fluxes are conserved exactly in the transfer between their different grids.
197            </NS_Description>
198        </NS_Component>
199    </NS_Model>
200    <NS_BoundaryCondition NS_type="Preindustrial">
201        <NS_Description>Green house gases were held at preindustrial levels</NS_Description>
202    </NS_BoundaryCondition>
203    <NS_BoundaryCondition NS_type="Present Day">
204        <NS_Description>Apart from greenhouse gases, other boundary conditions (solar irradiance
205            sulpher etc) are present day and not varying as is possible with this
206        model.</NS_Description>
207    </NS_BoundaryCondition>
208    <NS_InitialCondition NS_type="Unknown">
209        <NS_Description>.The initial condition in this run used an initial condition from a previous
210            spin up run with a date of 2789. While this date is arbitrary it reflects a greater
211            level of spin-up equilibration than previous long runs of HadCM3. The ocean was at some
212            point initialized directly from the Levitus et al (1994, 1995) observed ocean state at
213            rest, with a suitable atmospheric and sea ice state.</NS_Description>
214    </NS_InitialCondition>
Note: See TracBrowser for help on using the repository browser.