source: TI01-discovery/trunk/schema/numsim/badc.nerc.ac.uk__NumSim__Iwi_CodeBase.xml @ 2824

Subversion URL: http://proj.badc.rl.ac.uk/svn/ndg/TI01-discovery/trunk/schema/numsim/badc.nerc.ac.uk__NumSim__Iwi_CodeBase.xml@2824
Revision 2824, 15.6 KB checked in by lawrence, 12 years ago (diff)

Modified schema for NumSim to support xhtml

Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<NS_Simulated xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3    xmlns:moles="http://ndg.nerc.ac.uk/moles"
4    xmlns:xlink="http://www.w3.org/1999/xlink" xsi:noNamespaceSchemaLocation="http://ndg.nerc.ac.uk/schema/NumSim009.xsd" Version="0.9">
5    <!-- Note that this is a handcoded example XML file which should not be regarded as
6        authoratative about the COAPEC 500 year run, Bryan Lawrence, September 2005 -->
7    <NS_CodeBase>
8        <NS_ID >
9            <moles:schemeIdentifier>NumSim</moles:schemeIdentifier>
10            <moles:repositoryIdentifier>badc.nerc.ac.uk</moles:repositoryIdentifier>
11            <moles:localIdentifier>Iwi_CodeBase</moles:localIdentifier>
12        </NS_ID>
13        <NS_Description>This is the HadCM3 codebase used on BADC Beowulf Cluster</NS_Description>
14        <NS_Model>
15            <NS_Name>HadCM3 PUM V4.5 COAPEC Beowulf</NS_Name>
16            <NS_Category>GCM</NS_Category>
17            <NS_RelatedModel
18                xlink:href="http://www.met-office.gov.uk/research/hadleycentre/models/HadCM3.html"
19                xlink:title="HadCM3">
20                <NS_Relationship>This version was slightly modified from the Met Office Cray version
21                    to run in the beowulf environment and is V4.5 (cf V4.4 for the original HadCM3).
22                    Amongst the key physics differences:In the atmosphere: updated spectral
23                    coefficients for longwave radiation, a 3-dimensional CO field, and an accurate
24                    treatment of precipitation phase change; in the ocean, the Griffies isopycnal
25                    diffusion scheme replacing the older Redi scheme, and a new parameterisation of
26                    Mediterranean and Hudson bay outflow.See also Lawrence and Iwi for other subtle
27                    differences. </NS_Relationship>
28            </NS_RelatedModel>
29            <NS_References>
30                <NS_Reference>Iwi and Lawrence (2004). A comparison between HadCM3 integrations for
31                    COAPEC using Beowulf (UM version 4.5) and Cray T3E (UM version 4.4)
32                    http://home.badc.rl.ac.uk/iwi/um/downloads/comparison.pdf</NS_Reference>
33                <NS_Reference>Gordon, C., C. Cooper, C.A. Senior, H. Banks, J.M. Gregory, T.C.
34                    Johns, J.F.B. Mitchell and R.A. Wood, 2000: The simulation of SST, sea ice
35                    extents and ocean heat transports in a version of the Hadley Centre coupled
36                    model without flux adjustments. Climate Dynamics 16: 147-168. </NS_Reference>
37            </NS_References>
38            <NS_Component>
39                <NS_Name>Atmosphere</NS_Name>
40                <NS_ComponentType>Atmosphere</NS_ComponentType>
41                <NS_Description>The atmospheric component of HadCM3 has 19 levels with a horizontal
42                    resolution of 2.5 degrees of latitude by 3.75 degrees of longitude, which
43                    produces a global grid of 96 x 73 grid cells. This is equivalent to a surface
44                    resolution of about 417 km x 278 km at the Equator, reducing to 295 km x 278 km
45                    at 45 degrees of latitude (comparable to a spectral resolution of T42).Note that
46                    while the atmospheric component of the model also optionally allows the
47                    emission, transport, oxidation and deposition of sulphur compounds
48                    (dimethylsulphide, sulphur dioxide and ammonium sulphate) to be simulated
49                    interactively permitting the direct and indirect forcing effects of sulphate
50                    aerosols to be modelled given scenarios for sulphur emissions and oxidants, this
51                    option was not used in this integration.</NS_Description>
52                <NS_RelatedModel  xlink:href="unknown" xlink:title="HADAM3">
53                    <NS_Relationship>Portable Version</NS_Relationship>
54                </NS_RelatedModel>
55                <NS_References>
56                    <NS_Reference>Pope, V. D., M. L. Gallani, P. R. Rowntree and R. A. Stratton,
57                        2000: The impact of new physical parametrizations in the Hadley Centre
58                        climate model -- HadAM3. Climate Dynamics, 16: 123-146. </NS_Reference>
59                </NS_References>
60                <NS_Component>
61                    <NS_Name>Radiation Scheme</NS_Name>
62                    <NS_Description> 6 and 8 spectral bands in the solar (shortwave) and terrestrial
63                        thermal (longwave) wavelengths. The radiative effects of minor greenhouse
64                        gases as well as CO2, water vapour and ozone are explicitly represented
65                        (Edwards and Slingo, 1996). A simple parametrization of background aerosol
66                        (Cusack et al 1998) is also included.</NS_Description>
67                    <NS_References>
68                        <NS_Reference>Edwards, J.M. and A. Slingo, 1996: Sudies with a flexible new
69                            radiation code. I: Choosing a configuration for a large scale model.
70                            Quart. J. Roy. Meteor. Soc. 122: 689-719. </NS_Reference>
71                        <NS_Reference>Cusack S., A. Slingo, J.M. Edwards, and M. Wild, 1998: The
72                            radiative impact of a simple aerosol climatology on the Hadley Centre
73                            GCM. Quart. J. Roy. Meteor. Soc. 124: 2517-2526. </NS_Reference>
74                    </NS_References>
75                </NS_Component>
76                <NS_Component>
77                    <NS_Name>Land Surface Scheme</NS_Name>
78                    <NS_ComponentType>LandSurface</NS_ComponentType>
79                    <NS_Description>Includes a representation of the freezing and melting of soil
80                        moisture, as well as surface runoff and soil drainage; the formulation of
81                        evaporation includes the dependence of stomatal resistance on temperature,
82                        vapour pressure and CO2 concentration. The surface albedo is a function of
83                        snow depth, vegetation type and also of temperature over snow and ice.</NS_Description>
84                    <NS_References>
85                        <NS_Reference>Cox, P., R. Betts, C. Bunton, R. Essery, P.R. Rowntree, and J.
86                            Smith, 1999: The impact of new land surface physics on the GCM
87                            simulation of climate and climate sensitivity. Climate Dynamics 15:
88                            183-203. </NS_Reference>
89                    </NS_References>
90                </NS_Component>
91                <NS_Component>
92                    <NS_Name>Convection Scheme</NS_Name>
93                    <NS_Description> A penetrative convective scheme is used, modified to include an
94                        explicit down-draught, and the direct impact of convection on momentum. </NS_Description>
95                    <NS_References>
96                        <NS_Reference>Gregory and Rowntree, 1990? </NS_Reference>
97                        <NS_Reference>Gregory, D., R. Kershaw and P.M. Inness, 1997: Parametrization
98                            of momentum transport by convection. II: tests in single column and
99                            general circulation models. Quart. J. Roy. Meteor. Soc. 123: 1153-1183.
100                        </NS_Reference>
101                    </NS_References>
102                </NS_Component>
103                <NS_Component>
104                    <NS_Name>Gravity Wave</NS_Name>
105                    <NS_Description> Models the effects of anisotropic orography, high drag states,
106                        flow blocking and trapped lee waves.</NS_Description>
107                    <NS_References>
108                        <NS_Reference>Milton, S.F. and C.A.Wilson, 1996: The impact of parametrized
109                            sub-grid scale orographic forcing on systematic errors in a global NWP
110                            model. Mon. Weath. Rev. 124: 2023-2045. </NS_Reference>
111                        <NS_Reference>Gregory, D., G.J. Shutts and J.R. Mitchell, 1998: A new
112                            gravity wave drag scheme incorporating anisotropic orography and low
113                            level wave breaking: Impact upon the climate of the UK Meteorological
114                            Office Unified Model. Quart. J. Roy. Meteor. Soc. 124: 463-493.
115                        </NS_Reference>
116                    </NS_References>
117                </NS_Component>
118                <NS_Component>
119                    <NS_Name>Precip and Cloud Scheme</NS_Name>
120                    <NS_Description> The large-scale precipitation and cloud scheme is formulated in
121                        terms of an explicit cloud water variable following Smith (1990). The
122                        effective radius of cloud droplets is a function of cloud water content and
123                        droplet number concentration (Martin et al 1994). Note that this version of
124                        the code may differ slightly from those described in these references
125                        (Lawrence and Iwi, 2004). </NS_Description>
126                    <NS_References>
127                        <NS_Reference>Smith, R.N.B, 1990: A scheme for predicting layer clouds and
128                            their water content in a general circulation model. Quart. J. Roy.
129                            Meteor. Soc. 116: 435-460. </NS_Reference>
130                        <NS_Reference>Martin, G.M., D.W. Johnson and A. Spice, 1994: The measurement
131                            and parametrization of effective radius of droplets in warm
132                            stratocumulus clouds. J. Atmos. Sci. 51: 1823-1842. </NS_Reference>
133                        <NS_Reference>Iwi and Lawrence (2004). A comparison between HadCM3
134                            integrations for COAPEC using Beowulf (UM version 4.5) and Cray T3E (UM
135                            version 4.4)
136                            http://home.badc.rl.ac.uk/iwi/um/downloads/comparison.pdf</NS_Reference>
137                    </NS_References>
138                </NS_Component>
139            </NS_Component>
140            <NS_Component>
141                <NS_Name>Ocean</NS_Name>
142                <NS_ComponentType>Ocean</NS_ComponentType>
143                <NS_Description>The oceanic component of HadCM3 has 20 levels with a horizontal
144                    resolution of 1.25 x 1.25 degrees. At this resolution it is possible to
145                    represent important details in oceanic current structures. Horizontal mixing of
146                    tracers uses a version of the Gent and McWilliams (1990) adiabatic diffusion
147                    scheme with a variable thickness diffusivity (Wright 1997; Visbeck et al. 1997)
148                    is used. There is no explicit horizontal diffusion of tracers. The
149                    along-isopycnal diffusivity of tracers is 1000 m2 s-1 and horizontal momentum
150                    viscosity varies with latitude between 3000 and 6000 m2 s-1 at the poles and
151                    equator respectively. Near-surface vertical mixing is parametrized partly by a
152                    Kraus-Turner mixed layer scheme for tracers (Kraus and Turner 1967), and a
153                    K-theory scheme (Pacanowski and Philander 1981) for momentum. Below the upper
154                    layers the vertical diffusivity is an increasing function of depth only.
155                    Convective adjustment is modified in the region of the Denmark Straits and
156                    Iceland-Scotland ridge better to represent down-slope mixing of the overflow
157                    water, which is allowed to find its proper level of neutral buoyancy rather than
158                    mixing vertically with surrounding water masses. The scheme is based on Roether
159                    et al (1994). Mediterranean water is partially mixed with Atlantic water across
160                    the Strait of Gibraltar as a simple representation of water mass exchange since
161                    the channel is not resolved in the model. . In order to avoid a global average
162                    salinity drift, surface water fluxes are converted to surface salinity fluxes
163                    using a constant reference salinity of 35 PSU. </NS_Description>
164                <NS_References>
165                    <NS_Reference>Gent, P.R. and J.C. McWilliams, 1990: Isopycnal mixing in ocean
166                        circulation models. J. Phys. Oceanogr. 20: 150-155. </NS_Reference>
167                    <NS_Reference>Kraus, E.B. and J.S. Turner, 1967: A one dimensional model of the
168                        seasonal thermocline. Part II. Tellus, 19: 98-105. </NS_Reference>
169                    <NS_Reference> Levitus, S. and T.P. Boyer, 1994: World Ocean Atlas 1994, Volume
170                        4: Temperature. NOAA/NESDIS E/OC21, US Department of Commerce, Washington,
171                        DC, 117pp. </NS_Reference>
172                    <NS_Reference>Levitus, S., R. Burgett, and T.P. Boyer, 1995: World Ocean Atlas
173                        1994, Volume 3: Salinity. NOAA/NESDIS E/OC21, US Department of Commerce,
174                        Washington, DC, 99pp. </NS_Reference>
175                    <NS_Reference>Pacanowski, R.C. and S.G. Philander, 1981: Parametrization of
176                        vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr.
177                        11: 1443-1451. </NS_Reference>
178                    <NS_Reference>Roether, W., V.M. Roussenov and R.Well, 1994: A tracer study of
179                        the thermohaline circulation of the eastern Mediterranean. In: Ocean
180                        Processes in Climate Dynamics: Global and Mediterranean Example pp.371-394.
181                        Eds. P. Malanotte-Rizzoli and A.R. Robinson, Kluwer Academic Press. </NS_Reference>
182                    <NS_Reference>Visbeck, M., J. Marshall, T. Haine and M. Spall, 1997: On the
183                        specification of eddy transfer coefficients in coarse resolution ocean
184                        circulation models. J. Phys. Oceanogr. 27: 381-402. </NS_Reference>
185                    <NS_Reference>Wright, D.K., 1997: A new eddy mixing parametrization and ocean
186                        general circulation model. International WOCE newsletter, 26: 27-29.
187                    </NS_Reference>
188                </NS_References>
189            </NS_Component>
190            <NS_Component>
191                <NS_Name>Sea Ice</NS_Name>
192                <NS_ComponentType>Cryosphere</NS_ComponentType>
193                <NS_Description> The sea ice model uses a simple thermodynamic scheme including
194                    leads and snow-cover. Ice is advected by the surface ocean current, with
195                    convergence prevented when the depth exceeds 4 m.There is no explicit
196                    representation of iceberg calving, so a prescribed water flux is returned to the
197                    ocean at a rate calibrated to balance the net snowfall accumulation on the ice
198                    sheets, geographically distributed within regions where icebergs are found.</NS_Description>
199                <NS_References>
200                    <NS_Reference>Cattle, H. and J. Crossley, 1995: Modelling Arctic climate change.
201                        Phil Trans R Soc London A352: 201-213. </NS_Reference>
202                </NS_References>
203            </NS_Component>
204            <NS_Component>
205                <NS_Name>Atmos-Ocean Coupler</NS_Name>
206                <NS_ComponentType>Coupler</NS_ComponentType>
207                <NS_Description>The atmosphere and ocean exchange information once per day. Heat and
208                    water fluxes are conserved exactly in the transfer between their different
209                    grids. </NS_Description>
210            </NS_Component>
211        </NS_Model>
212    </NS_CodeBase>
213</NS_Simulated>
Note: See TracBrowser for help on using the repository browser.