1 | <?xml version="1.0" encoding="UTF-8"?> |
---|
2 | <NS_Simulated xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" |
---|
3 | xmlns:xlink="http://www.w3.org/1999/xlink" xsi:noNamespaceSchemaLocation="../../NumSim.xsd"> |
---|
4 | <!-- Note that this is a handcoded example XML file which should not be regarded as |
---|
5 | authoratative about the Higem control run, Charlotte Pascoe, May 2006 --> |
---|
6 | <NS_CodeBase> |
---|
7 | <NS_Description>This is the HiGEM codebase</NS_Description> |
---|
8 | <NS_Model> |
---|
9 | <NS_Name>HiGEM V6.1 Control (xbpjt)</NS_Name> |
---|
10 | <NS_Category>GCM</NS_Category> |
---|
11 | <NS_RelatedModel |
---|
12 | xlink:href="http://www.higem.nerc.ac.uk/" |
---|
13 | xlink:title="HiGEM"> |
---|
14 | <NS_Relationship>This is the first HiGEM climate run </NS_Relationship> |
---|
15 | </NS_RelatedModel> |
---|
16 | <NS_References> |
---|
17 | <NS_Reference>http://www2.met-office.gov.uk/research/nwp/publications/papers/unified_model/umdp15_v6.0.pdf</NS_Reference> |
---|
18 | </NS_References> |
---|
19 | <NS_Component><!-- ATMOSPHERE --> |
---|
20 | <NS_Name>Atmosphere</NS_Name> |
---|
21 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
22 | <NS_Description><!-- SPACE AND TIME --> |
---|
23 | The atmospheric component of HiGEM has 38 vertical levels |
---|
24 | with a horizontal resolution of 1.25 degrees of latitude by 0.83 degrees of longitude, |
---|
25 | which produces a global grid of 288 x 217 grid cells. This is equivalent to a surface |
---|
26 | resolution of about 139 km x 92 km at the Equator, reducing to 98 km x 92 km |
---|
27 | at 45 degrees of latitude (comparable to a spectral resolution of Nblah). |
---|
28 | The atmospheric timestep period is 20 minutes (72 timesteps per 1 days). |
---|
29 | </NS_Description> |
---|
30 | <NS_Component><!-- Radiation Scheme --> |
---|
31 | <NS_Name>Radiation Scheme</NS_Name> |
---|
32 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
33 | <NS_Description> |
---|
34 | A general 2-stream radiation code including cloud microphysics. |
---|
35 | The radiation scheme uses 6 spectral bands in the solar (shortwave) wavelenths |
---|
36 | and 9 bands in the terrestrial thermal (longwave) wavelengths. |
---|
37 | The radiative effects of CO2 and ozone are explicitly represented as well as oxygen, methane, N2O, CFC-11 and CFC-12. |
---|
38 | The LW and SW radiative effects of climatological distributions of sulphate, seasalt, soot and biomass aerosols are included. |
---|
39 | A cloud area parameterisation produces an Area Cloud Fraction which replaces the bulk value used in the radiation code. |
---|
40 | Mixed phase clouds containing both ice and water are segregated into separate sub-clouds for radiation calculations. |
---|
41 | </NS_Description> |
---|
42 | <NS_References> |
---|
43 | <NS_Reference> |
---|
44 | JM Edwards, Slingo A, 1996: Studies with a flexible new radiation code. 1. Choosing a configuration for a large-scale model |
---|
45 | QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 122(531) 689-719 |
---|
46 | </NS_Reference> |
---|
47 | </NS_References> |
---|
48 | </NS_Component> |
---|
49 | <NS_Component><!-- Land Surface Scheme --> |
---|
50 | <NS_Name>Land Surface Scheme</NS_Name> |
---|
51 | <NS_ComponentType>LandSurface</NS_ComponentType> |
---|
52 | <NS_Description> |
---|
53 | The surface albedo is a function of snow depth and the temperature of the snow over sea ice. |
---|
54 | The surface hydrology uses the MOSES-II (Met Office Surface Exchange Scheme). |
---|
55 | The vegetation distribution is fixed. |
---|
56 | Using coastal tiling allows both land and sea to co-exist in the same gridbox. |
---|
57 | There are 9 land surface tiles per grid cell. |
---|
58 | </NS_Description> |
---|
59 | <NS_References> |
---|
60 | <NS_Reference> |
---|
61 | JA. CURRY, SCHRAMM JL, EBERT EE: 1995: SEA-ICE ALBEDO CLIMATE FEEDBACK MECHANISM. |
---|
62 | JOURNAL OF CLIMATE 8 (2): 240-247 |
---|
63 | </NS_Reference> |
---|
64 | </NS_References> |
---|
65 | </NS_Component> |
---|
66 | <NS_Component><!-- Boundary Layer Scheme --> |
---|
67 | <NS_Name>Boundary Layer Scheme</NS_Name> |
---|
68 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
69 | <NS_Description> |
---|
70 | The boundary layer scheme explicitly parameterises the top-of-mixed-layer entrainment. |
---|
71 | It uses a formulation of the surface exchange coefficients based directly on Monin-Obukhov stability functions. |
---|
72 | It uses a subgrid diagnosis of cloud-base height in order to improve the accuracy of the buoyancy flux integral |
---|
73 | which is used to diagnose the depth of mixing in stratocumulus clouds. |
---|
74 | The boundary layer scheme splits the radiative heating increments into separate LW and SW contributions. |
---|
75 | It uses a Richardson number based mixing scheme and orographic roughness fields. |
---|
76 | The scheme accounts for the radiative coupling and the thermal capacity of the vegetation canopy. |
---|
77 | </NS_Description> |
---|
78 | <NS_References> |
---|
79 | <NS_Reference>Lock, A. P. 2001: The numerical representation of entrainment in parametrizations of boundary layer turbulent mixing. |
---|
80 | MWR, 129, 1148-1163 |
---|
81 | </NS_Reference> |
---|
82 | <NS_Reference>Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, R. N. B. Smith et al. 2000: |
---|
83 | A new boundary layer mixing scheme. Part I: scheme description and SCM tests. MWR, 128, 3187-3199 |
---|
84 | </NS_Reference> |
---|
85 | </NS_References> |
---|
86 | </NS_Component> |
---|
87 | <NS_Component><!-- Convection Scheme --> |
---|
88 | <NS_Name>Convection Scheme</NS_Name> |
---|
89 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
90 | <NS_Description> |
---|
91 | Convection is able to transport momentum in the vertical. |
---|
92 | The inital convective plume mass flux is determined by a CAPE based clousure scheme. |
---|
93 | The radiative representation of anvils modifies the convective cloud amount (CCA) to vary with height during deep convection. |
---|
94 | Excluding precipitation from the water path means that the radiation scheme does not 'see' the convective rain and snow. |
---|
95 | The accurate treatment of precipitation phase change ensures that precipitation does not change phase if the associated latent |
---|
96 | cooling would take the temperature below the freezing point again. |
---|
97 | </NS_Description> |
---|
98 | <NS_References> |
---|
99 | <NS_Reference></NS_Reference> |
---|
100 | <NS_Reference></NS_Reference> |
---|
101 | </NS_References> |
---|
102 | </NS_Component> |
---|
103 | <NS_Component><!-- Gravity Wave Scheme --> |
---|
104 | <NS_Name>Gravity Wave Scheme</NS_Name> |
---|
105 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
106 | <NS_Description> |
---|
107 | The orographic gravitity wave scheme also includes flow blocking. |
---|
108 | The gravity wave constant is 1.00e+05 and defines the magnitude of the parametrized response. |
---|
109 | The critical Froude number is 4.00 and determines the proportion of that drag attributed to flow blocking and gravity wave drag respectively. |
---|
110 | The spectral gravity wave scheme is not used. |
---|
111 | </NS_Description> |
---|
112 | <NS_References> |
---|
113 | <NS_Reference>Webster S., A.R. Brown, D.R. Cameron and C.P. Jones, 2003: |
---|
114 | Improvements to the Representation of Orography in the Met Office Unified Model. |
---|
115 | Quarterly Journal of the Royal Meteorological Society, 129 (591): 1989-2010 Part B. |
---|
116 | </NS_Reference> |
---|
117 | </NS_References> |
---|
118 | </NS_Component> |
---|
119 | <NS_Component><!-- Precipitation and Cloud Scheme --> |
---|
120 | <NS_Name>Precipitation and Cloud Scheme</NS_Name> |
---|
121 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
122 | <NS_Description> The large scale precipitation scheme contains a full microphysical calculation of the cloud phase and |
---|
123 | generation of precipitation with water vapour, cloud liquid water and ice particle content as prognostic variables. |
---|
124 | Microphysical processes are treated as transfer terms between water vapour, liquid, ice, and rain. |
---|
125 | The fraction of cloud ice content that is pristine ice crystals and snow aggregate particles are treated |
---|
126 | seperately in the microphysical transfer terms. |
---|
127 | Condensation can occur before grid scale supersaturation and the vapour is condensed to cloud water. |
---|
128 | The conversion from vapour to liquid or frozen cloud water is reversible. |
---|
129 | A RHcrit parametrization causes the cloud scheme to use 3D diagnosed critical relative humidity. |
---|
130 | A cloud area parametrization produces an Area Cloud Fraction which replaces the Bulk value in much of the radiation code. |
---|
131 | </NS_Description> |
---|
132 | <NS_References> |
---|
133 | <NS_Reference>Wood et al. ,2002: Atmos. Res., 65, 109-128</NS_Reference> |
---|
134 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p026.pdf</NS_Reference> |
---|
135 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p029.pdf</NS_Reference> |
---|
136 | </NS_References> |
---|
137 | </NS_Component> |
---|
138 | <NS_Component><!-- Advection and Diffusion --> |
---|
139 | <NS_Name>Advection and Diffusion</NS_Name> |
---|
140 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
141 | <NS_Description> |
---|
142 | A semi-lagrangian advection scheme is used. |
---|
143 | The advection of potential temperature, moisture, density and winds are treated separately. |
---|
144 | Moisture is conserved using a non-hydrostatic scheme. |
---|
145 | A conservative horizontal diffusion scheme is used. |
---|
146 | Vertical diffusion is switched off. |
---|
147 | </NS_Description> |
---|
148 | <NS_References> |
---|
149 | <NS_Reference> |
---|
150 | http://www2.met-office.gov.uk/research/nwp/publications/papers/unified_model/umdp15_v6.0.pdf |
---|
151 | </NS_Reference> |
---|
152 | </NS_References> |
---|
153 | </NS_Component> |
---|
154 | <NS_Component><!-- Aerosols --> |
---|
155 | <NS_Name>Aerosols</NS_Name> |
---|
156 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
157 | <NS_Description> |
---|
158 | The aerosol parameterisation includes a sulphur cycle, soot scheme and biomass aerosol scheme. |
---|
159 | The sulphur cycle includes SO2 emissions from the surface, chimneys and volcanoes. |
---|
160 | The sulphur cycle also uses an interactive dimethyl sulphide scheme. |
---|
161 | The biomass scheme includes emissions from the surface and from high levels. |
---|
162 | </NS_Description> |
---|
163 | </NS_Component> |
---|
164 | <NS_Component><!-- Rivers --> |
---|
165 | <NS_Name>Rivers</NS_Name> |
---|
166 | <NS_ComponentType>LandSurface</NS_ComponentType> |
---|
167 | <NS_Description> |
---|
168 | All rivers flow with an effective velocity of 0.4 m/s and a meander ratio of 1.4. |
---|
169 | River outflow to the ocean is included. |
---|
170 | </NS_Description> |
---|
171 | </NS_Component> |
---|
172 | </NS_Component> |
---|
173 | <NS_Component><!-- OCEAN --> |
---|
174 | <NS_Name>Ocean</NS_Name> |
---|
175 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
176 | <NS_Description><!-- SPACE AND TIME --> |
---|
177 | The oceanic component of HiGEM has 40 vertical levels with |
---|
178 | a horizontal resolution of 0.333 degrees of latitude by 0.333 degrees of longitude, |
---|
179 | which produces a global grid of 1082 x 540 grid cells. This is equivalent to a surface |
---|
180 | resolution of about 37 km x 37 km at the Equator, reducing to 26 km x 37 km |
---|
181 | at 45 degrees of latitude (comparable to a spectral resolution of Nblah). |
---|
182 | The atmospheric timestep period is 20 minutes (72 timesteps per 1 days). |
---|
183 | The ocean GCM includes a polar island as standard. |
---|
184 | The ocean GCM uses the McDougall equation of state. |
---|
185 | </NS_Description> |
---|
186 | <NS_References> |
---|
187 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</NS_Reference> |
---|
188 | </NS_References> |
---|
189 | <NS_Component><!-- tracer advection and diffusion--> |
---|
190 | <NS_Name>Tracer advection and diffusion</NS_Name> |
---|
191 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
192 | <NS_Description> |
---|
193 | The advection of active tracers, temperature and salinity, uses a fourth order differencing scheme (Pacanowski and Griffies, 1998) |
---|
194 | which uses a fourth order estimate of the tracer gradients together with the second order advective fluxes. |
---|
195 | The option to use upwind advection in the bottom gridcell at each point avoids instabilities found in high resolution runs. |
---|
196 | The Griffies diffusion scheme orientates the mixing tensor to lie along isopycnal rather than horizontal sufarces (Griffies et al., 1998). |
---|
197 | Isopycnal diffusivity is 5.00e+02 (m*m/s) and is constant with depth. |
---|
198 | The Gent and McWilliams (GM) Scheme parametrises the effect of mesoscale eddies on tracer transports. |
---|
199 | The Visbeck scheme allows the diffusivity for the GM scheme to be spatially and temporally variable, |
---|
200 | so that it can take large values in eddy-generation regions and small values elsewhere. |
---|
201 | The HADCM4 version of the Visbeck scheme uses large-scale density gradients to pick out eddy-generation regions. |
---|
202 | The isopycnal diffusivity is tapered as the slope of the isopycnals increases using a hyperbolic tangent function. |
---|
203 | A scale-selective version of the Gent and McWilliams scheme (Roberts and Marshall 1998) removes small-scale noise from the tracer fields |
---|
204 | without affecting their large-scale distribution and without causing any mixing across isopycnal surfaces. |
---|
205 | </NS_Description> |
---|
206 | <NS_References> |
---|
207 | <NS_Reference>Pacanowski and Griffies, MOM 3.0 Manual, 1998</NS_Reference> |
---|
208 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p051.pdf</NS_Reference> |
---|
209 | <NS_Reference>Griffies et al 1998</NS_Reference> |
---|
210 | <NS_Reference>Roberts and Marshall, 1998</NS_Reference> |
---|
211 | </NS_References> |
---|
212 | </NS_Component> |
---|
213 | <NS_Component><!-- Fourier filtering at high latitudes --> |
---|
214 | <NS_Name>Filtering</NS_Name> |
---|
215 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
216 | <NS_Description> |
---|
217 | Fourier filtering is used to decrease the effective resolution of the model at |
---|
218 | high latitudes, allowing a longer timestep to be used. See UMDP 40. Different |
---|
219 | filtered regions can be chosen for tracers and velocity and for the northern |
---|
220 | and southern hemispheres. In the northern hemisphere, filtering starts at |
---|
221 | 'First tracer/velocity row in northern hemisphere to be filtered' and goes |
---|
222 | right up to the north pole. The filtering removes scales less than the grid |
---|
223 | scale on the row defined by 'Tracer/velocity row used to define basic zonal |
---|
224 | dimension'. The equator-most row to be filtered in each hemisphere determines |
---|
225 | the minimum effective gridlength retained by the filtering. |
---|
226 | The first tracer/velocity row in the northern hemisphere: 510/509 |
---|
227 | Tracer/velocity row used to define basic zonal dimensions: 510/509 |
---|
228 | The last tracer/velocity row in the southern hemisphere:34/34 |
---|
229 | </NS_Description> |
---|
230 | <NS_References> |
---|
231 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p040.pdf</NS_Reference> |
---|
232 | </NS_References> |
---|
233 | </NS_Component> |
---|
234 | <NS_Component><!-- Mixed layer and vertical diffusion--> |
---|
235 | <NS_Name>Mixed Layer and vertical diffusion</NS_Name> |
---|
236 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
237 | <NS_Description> |
---|
238 | A Kraus-Turner (1967) type mixed layer model is used to parameterise the effects of surface generated turbulence. |
---|
239 | Vertical diffusion is dependent on the Ricardson Number (Peters et al, ?) |
---|
240 | The quadratic Large scheme calculates the vertical diffusion coefficient in the mixed layer (Large et al 1994) |
---|
241 | The quadratic Large scheme is applied where the Richardson number is less than 0.3 upto a maximum depth of 80 m. |
---|
242 | </NS_Description> |
---|
243 | <NS_References> |
---|
244 | <NS_Reference>Kraus Turner, 1967</NS_Reference> |
---|
245 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p041.pdf</NS_Reference> |
---|
246 | <NS_Reference>Peters et al, ?</NS_Reference> |
---|
247 | <NS_Reference>W.G.Large et al 1994, Oceanic Vertical Mixing : A review and a model |
---|
248 | with a nonlocal boundary layer parametrisation, Rev Geophys, 32, 363-403.</NS_Reference> |
---|
249 | </NS_References> |
---|
250 | </NS_Component> |
---|
251 | <NS_Component><!-- Barotropic Solution, Momentum Flux and Diffusion --> |
---|
252 | <NS_Name>Barotropic Solution, Momentum Flux and Diffusion</NS_Name> |
---|
253 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
254 | <NS_Description> |
---|
255 | A free-surface barotropic solution is used with Delphus-Delcross smoothing for the surface height field. |
---|
256 | A modifed Cox scheme is used for calculating velocity fluxes. |
---|
257 | Horizontal momentum diffusion uses viscosity coeffiecients that are constant in latitude: 0.00. |
---|
258 | Biharmonic momentum diffusion allows scale-selective damping to be applied to the velocities |
---|
259 | without affecting the large-scale velocity field. It is useful in helping the removal of grid-scale noise in the velocity field. |
---|
260 | </NS_Description> |
---|
261 | </NS_Component> |
---|
262 | <NS_Component><!-- Convection --> |
---|
263 | <NS_Name>Convection</NS_Name> |
---|
264 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
265 | <NS_Description> |
---|
266 | A Rahmstorf's full convection scheme is used which |
---|
267 | is guaranteed to produce a profile having complete static stability. |
---|
268 | </NS_Description> |
---|
269 | </NS_Component> |
---|
270 | <NS_Component><!-- Salinity Control --> |
---|
271 | <NS_Name>Salinity Control</NS_Name> |
---|
272 | <NS_Description> |
---|
273 | There is no reference salinity, instead salinity limits are applied. |
---|
274 | Upper salinity limit: 4.50000e-02 (psu/1000). |
---|
275 | Lower salinity limit: 5.00000e-03 (psu/1000). |
---|
276 | </NS_Description> |
---|
277 | </NS_Component> |
---|
278 | <NS_Component><!-- Ocean straits --> |
---|
279 | <NS_Name>Ocean Straits</NS_Name> |
---|
280 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
281 | <NS_Description> |
---|
282 | A generalised strait exchange scheme is used that advects water from a marginal sea into the main |
---|
283 | ocean, with a corresponding return flow. |
---|
284 | There is 1 strait in this set up with end coordinates (i,j) at (62, 378) and (65, 378). |
---|
285 | </NS_Description> |
---|
286 | </NS_Component> |
---|
287 | </NS_Component> |
---|
288 | <NS_Component><!-- SEA ICE (part of ocean scheme really)--> |
---|
289 | <NS_Name>Sea Ice</NS_Name> |
---|
290 | <NS_ComponentType>Cryosphere</NS_ComponentType> |
---|
291 | <NS_Description><!-- Sea Ice --> |
---|
292 | The prognostic sea ice model contains ice thermodynamics based on |
---|
293 | Semtner's "zero-layer" and calculates prognostic ice depth, ice concentration and snow depth. |
---|
294 | The multiple ice categories model allows the sub-grid scale ice thickness distribution to be represented. |
---|
295 | The EVP (elastic-viscous-plastic) dynamics based on Hibler's sea-ice rheology calculates velocities |
---|
296 | that are used to advect sea-ice. |
---|
297 | A north polar island is included and sea ice can be advected over it. |
---|
298 | </NS_Description> |
---|
299 | <NS_References> |
---|
300 | <NS_Reference> |
---|
301 | Semtner, A. J., 1976: |
---|
302 | A model for the thermodynamic growth of sea ice in numerical investigations of climate. |
---|
303 | J. Phys. Oceanogr., 6, 379-389. |
---|
304 | </NS_Reference> |
---|
305 | <NS_Reference> |
---|
306 | Hibler, W. D., 1979: Dynamic Thermodynamic Sea Ice Model. |
---|
307 | Journal of Physical Oceanography, 9(4), 815-846. |
---|
308 | </NS_Reference> |
---|
309 | </NS_References> |
---|
310 | <NS_Component><!-- Sea Ice Thermodynamics --> |
---|
311 | <NS_Name>Sea Ice Thermodynamics</NS_Name> |
---|
312 | <NS_ComponentType>Cryosphere</NS_ComponentType> |
---|
313 | <NS_Description> |
---|
314 | Ocean to ice heat flux parameterisation uses the 'McPhee scheme' |
---|
315 | (McPhee, 1992), which uses both the ocean-ice temperature difference and |
---|
316 | the friction velocity in the flux parameterisation. |
---|
317 | The 'McPhee scheme' produces a flux proportional to the ice concentration |
---|
318 | above a marginal sea ice concentration of 0.05. For lower concentrations, |
---|
319 | the heat flux is constant. |
---|
320 | |
---|
321 | Number of sea ice categories is 5. |
---|
322 | Minimum local ice depth is 0.1 m. |
---|
323 | Min local snow thickness: 1.0E-5 m |
---|
324 | Min local thickness of new ice growing in leads: 0.05m |
---|
325 | </NS_Description> |
---|
326 | <NS_References> |
---|
327 | <NS_Reference> |
---|
328 | McPhee, M. G., 1992: Turbulent heat-flux in the upper ocean under sea ice. |
---|
329 | Journal of Geophysical Research-Oceans, 97(C4), 5365-5379. |
---|
330 | </NS_Reference> |
---|
331 | <NS_Reference> |
---|
332 | Maykut G. A., M.G. McPhee, 1995: Solar heating of the Arctic mixed layer |
---|
333 | Journal of Geophysical Research-Oceans, 100(C12), 24691-24703. |
---|
334 | </NS_Reference> |
---|
335 | </NS_References> |
---|
336 | </NS_Component> |
---|
337 | <NS_Component><!-- Sea Ice Dynamics --> |
---|
338 | <NS_Name>Sea Ice Dynamics</NS_Name> |
---|
339 | <NS_ComponentType>Cryosphere</NS_ComponentType> |
---|
340 | <NS_Description> |
---|
341 | The sea ice velocity arises from a balance of windstress, ocean drag, coriolis and internal ice stresses. |
---|
342 | It is based on the viscous-plastic sea-ice rheology of Hibler (1979), and recommended for use in |
---|
343 | climate modelling by the Sea Ice Model Intercomparison Project [Kreyscher et al, 2000]. |
---|
344 | Convergence of ice is impeded or prevented when the ice is thick. |
---|
345 | The ice ridging scheme converts thinner ice to thicker ice, and if the ice is converging, the scheme |
---|
346 | ensures that enough ice ridges to keep the ice concentration equal or below 1 (Hunke and Lipscomb). |
---|
347 | |
---|
348 | Maximum compressive strength of ice per unit thickness is 2.00e+04 (N/m**2) |
---|
349 | Ice strength is smoothed to avoid instabilities at high northern latitudes polewards of 87.5 lat.. |
---|
350 | Ice velocities are filtered at high northern latiitudes to prevent excessive ridging and buildup of ice. |
---|
351 | The Quadratic ice-ocean drag coefficient is 1.50e-02 |
---|
352 | </NS_Description> |
---|
353 | <NS_References> |
---|
354 | <NS_Reference> |
---|
355 | Hibler, W. D., 1979: Dynamic Thermodynamic Sea Ice Model. |
---|
356 | Journal of Physical Oceanography, 9(4), 815-846. |
---|
357 | </NS_Reference> |
---|
358 | <NS_Reference> |
---|
359 | Kreyscher M et al., 2000: Results of the Sea Ice Model Intercomparison Project: |
---|
360 | Evaluation of sea ice rheology schemes for use in climate simulations |
---|
361 | Journal of Geophysical Research-Oceans, 105 (C5): 11299-11320. |
---|
362 | </NS_Reference> |
---|
363 | <NS_Reference> |
---|
364 | Thorndike, A. S., D. A. Rothrock, G. A. Maykut et al., 1975: |
---|
365 | Thickness Distribution of Sea Ice. |
---|
366 | Journal fo Geophysical Research-Oceans and Atmosphereres, 80(33), 4501-4513. |
---|
367 | </NS_Reference> |
---|
368 | <NS_Reference> |
---|
369 | Flato, G. M. and W. D. Hibler, 1995: |
---|
370 | Ridging and strength in modeling the thickness distribution of arctic sea-ice. |
---|
371 | Journal of Geophysical Research-Oceans, 100 (C9), 18611-18626. |
---|
372 | </NS_Reference> |
---|
373 | <NS_Reference> |
---|
374 | Lipscomb, W.H. and E. C. Hunke, 2004: Modeling sea ice transport using incremental remapping. |
---|
375 | Monthly Weather Review, 132 (6), 1341-1354. |
---|
376 | </NS_Reference> |
---|
377 | </NS_References> |
---|
378 | </NS_Component> |
---|
379 | </NS_Component> |
---|
380 | <NS_Component> |
---|
381 | <NS_Name>Atmos-Ocean Coupler</NS_Name> |
---|
382 | <NS_ComponentType>Coupler</NS_ComponentType> |
---|
383 | <NS_Description> |
---|
384 | </NS_Description> |
---|
385 | </NS_Component> |
---|
386 | </NS_Model> |
---|
387 | </NS_CodeBase> |
---|
388 | <NS_Experiment> |
---|
389 | <NS_Description></NS_Description> |
---|
390 | <NS_BoundaryCondition NS_Type="Present Day"> |
---|
391 | <NS_Description></NS_Description> |
---|
392 | </NS_BoundaryCondition> |
---|
393 | <NS_InitialCondition NS_Type="Unknown"> |
---|
394 | <NS_Description></NS_Description> |
---|
395 | </NS_InitialCondition> |
---|
396 | </NS_Experiment> |
---|
397 | </NS_Simulated> |
---|