1 | <?xml version="1.0" encoding="UTF-8"?> |
---|
2 | <NS_Simulated xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" |
---|
3 | xmlns:xlink="http://www.w3.org/1999/xlink" xsi:noNamespaceSchemaLocation="../../NumSim.xsd"> |
---|
4 | <!-- Note that this is a handcoded example XML file which should not be regarded as |
---|
5 | authoratative about the Higem control run, Charlotte Pascoe, May 2006 --> |
---|
6 | <NS_CodeBase> |
---|
7 | <NS_Description>This is the HiGEM codebase</NS_Description> |
---|
8 | <NS_Model> |
---|
9 | <NS_Name>HiGEM V6.1 Control (xbpjt)</NS_Name> |
---|
10 | <NS_Category>GCM</NS_Category> |
---|
11 | <NS_RelatedModel |
---|
12 | xlink:href="http://www.higem.nerc.ac.uk/" |
---|
13 | xlink:title="HiGEM"> |
---|
14 | <NS_Relationship>This is the first HiGEM climate run </NS_Relationship> |
---|
15 | </NS_RelatedModel> |
---|
16 | <NS_References> |
---|
17 | <NS_Reference>http://www2.met-office.gov.uk/research/nwp/publications/papers/unified_model/umdp15_v6.0.pdf</NS_Reference> |
---|
18 | </NS_References> |
---|
19 | <NS_Component> |
---|
20 | <NS_Name>Atmosphere</NS_Name> |
---|
21 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
22 | <NS_Description> |
---|
23 | The atmospheric component of HiGEM has 38 vertical levels with a horizontal |
---|
24 | resolution of 1.25 degrees of latitude by 1.65 degrees of longitude, which |
---|
25 | produces a global grid of 288 x 217 grid cells. This is equivalent to a surface |
---|
26 | resolution of about 139 km x 184 km at the Equator, reducing to 98 km x 184 km |
---|
27 | at 45 degrees of latitude (comparable to a spectral resolution of Nblah). |
---|
28 | The atmospheric timestep period is 20 minutes (72 timesteps per 1 days). |
---|
29 | </NS_Description> |
---|
30 | <NS_Component> |
---|
31 | <NS_Name>Radiation Scheme</NS_Name> |
---|
32 | <NS_Description> |
---|
33 | A general 2-stream radiation code including cloud microphysics. |
---|
34 | The radiation scheme uses 6 spectral bands in the solar (shortwave) wavelenths |
---|
35 | and 9 bands in the terrestrial thermal (longwave) wavelengths. |
---|
36 | The radiative effects of CO2 and ozone are explicitly represented as well as oxygen, methane, N2O, CFC-11 and CFC-12. |
---|
37 | The LW and SW radiative effects of climatological distributions of sulphate, seasalt, soot and biomass aerosols are included. |
---|
38 | Including cloud area parameterisation produces an Area Cloud Fraction which replaces the bulk value used in the radiation code. |
---|
39 | Mixed phase clouds containing both ice and water are segregated into separate sub-clouds for radiation calculations. |
---|
40 | </NS_Description> |
---|
41 | <NS_References> |
---|
42 | <NS_Reference> |
---|
43 | JM Edwards, Slingo A, 1996: Studies with a flexible new radiation code. 1. Choosing a configuration for a large-scale model |
---|
44 | QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 122(531) 689-719 |
---|
45 | </NS_Reference> |
---|
46 | </NS_References> |
---|
47 | </NS_Component> |
---|
48 | <NS_Component> |
---|
49 | <NS_Name>Land Surface Scheme</NS_Name> |
---|
50 | <NS_ComponentType>LandSurface</NS_ComponentType> |
---|
51 | <NS_Description> |
---|
52 | The surface albedo is a function of snow depth and the temperature of the snow over sea ice. |
---|
53 | The surface hydrology uses the MOSES-II (Met Office Surface Exchange Scheme). |
---|
54 | The vegetation distribution is fixed. |
---|
55 | Using coastal tiling allows both land and sea to co-exist in the same gridbox. |
---|
56 | There are 9 land surface tiles per grid cell. |
---|
57 | </NS_Description> |
---|
58 | <NS_References> |
---|
59 | <NS_Reference> |
---|
60 | JA. CURRY, SCHRAMM JL, EBERT EE: 1995: SEA-ICE ALBEDO CLIMATE FEEDBACK MECHANISM. |
---|
61 | JOURNAL OF CLIMATE 8 (2): 240-247 |
---|
62 | </NS_Reference> |
---|
63 | </NS_References> |
---|
64 | </NS_Component> |
---|
65 | <NS_Component> |
---|
66 | <NS_Name>boundary layer scheme</NS_Name> |
---|
67 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
68 | <NS_Description> |
---|
69 | The boundary layer scheme explicitly parameterises the top-of-mixed-layer entrainment. |
---|
70 | Uses a formulation of the surface exchange coefficients based directly on Monin-Obukhov stability functions. |
---|
71 | Uses a new subgrid diagnosis of cloud-base height in order to improve the accuracy of the buoyancy flux integral |
---|
72 | used to diagnose the depth of mixing in stratocumulus clouds. |
---|
73 | The scheme splits the radiative heating increments into separate LW and SW contributions. |
---|
74 | The boundary layer uses a Richardson number based mixing scheme and orographic roughness fields. |
---|
75 | The scheme accounts for the radiative coupling and the thermal capacity of the vegetation canopy. |
---|
76 | </NS_Description> |
---|
77 | <NS_References> |
---|
78 | <NS_Reference>Lock, A. P. 2001: The numerical representation of entrainment in parametrizations of boundary layer turbulent mixing. |
---|
79 | MWR, 129, 1148-1163 |
---|
80 | </NS_Reference> |
---|
81 | <NS_Reference>Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, R. N. B. Smith et al. 2000: |
---|
82 | A new boundary layer mixing scheme. Part I: scheme description and SCM tests. MWR, 128, 3187-3199 |
---|
83 | </NS_Reference> |
---|
84 | </NS_References> |
---|
85 | </NS_Component> |
---|
86 | <NS_Component> |
---|
87 | <NS_Name>Convection Scheme</NS_Name> |
---|
88 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
89 | <NS_Description> |
---|
90 | Convection is able to transport momentum in the vertical. |
---|
91 | The inital convective plume mass flux is determined by a CAPE based clousure scheme. |
---|
92 | The radiative representation of anvils modifies the convective cloud amount (CCA) to vary with height during deep convection. |
---|
93 | Excluding precipitation from the water path means that the radiation scheme does not 'see' the convective rain and snow. |
---|
94 | The accurate treatment of precipitation phase change ensures that precipitation does not change phase if the associated latent |
---|
95 | cooling would take the temperature below the freezing point again. |
---|
96 | </NS_Description> |
---|
97 | <NS_References> |
---|
98 | <NS_Reference></NS_Reference> |
---|
99 | <NS_Reference></NS_Reference> |
---|
100 | </NS_References> |
---|
101 | </NS_Component> |
---|
102 | <NS_Component> |
---|
103 | <NS_Name>Gravity Wave</NS_Name> |
---|
104 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
105 | <NS_Description> |
---|
106 | Orographic gravitity wave scheme including flow blocking. |
---|
107 | The gravity wave constant is 1.00e+05 and defines the magnitude of the parametrized response. |
---|
108 | The critical Froude number is 4.00 and determines the proportion of that drag attributed to flow blocking |
---|
109 | and gravity wave drag respectively. |
---|
110 | The spectral gravity wave scheme is not used. |
---|
111 | </NS_Description> |
---|
112 | <NS_References> |
---|
113 | <NS_Reference>Webster S., A.R. Brown, D.R. Cameron and C.P. Jones, 2003: |
---|
114 | Improvements to the Representation of Orography in the Met Office Unified Model. |
---|
115 | Quarterly Journal of the Royal Meteorological Society, 129 (591): 1989-2010 Part B. |
---|
116 | </NS_Reference> |
---|
117 | </NS_References> |
---|
118 | </NS_Component> |
---|
119 | <NS_Component> |
---|
120 | <NS_Name>Precip and Cloud Scheme</NS_Name> |
---|
121 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
122 | <NS_Description> The large scale precipitation scheme contains a full microphysical calculation of the cloud phase and |
---|
123 | generation of precipitation with water vapour, cloud liquid water and ice particle content as prognostic variables. |
---|
124 | Microphysical processes are treated as transfer terms between water vapour, liquid, ice, and rain. |
---|
125 | In the 3C scheme the fraction of cloud ice content that is pristine ice crystals and snow aggregate particles are treated |
---|
126 | seperately in the microphysical transfer terms. |
---|
127 | Condensation can occur before grid scale supersaturation and the vapour is condensed to cloud water. |
---|
128 | The conversion from vapour to liquid or frozen cloud water is reversible. |
---|
129 | INCLUDING RHcrit parametrization causes the cloud scheme to use 3D diagnosed critical relative humidity. |
---|
130 | INCLUDING cloud area parametrization produces an Area Cloud Fraction which replaces the Bulk value in much of the radiation code. |
---|
131 | </NS_Description> |
---|
132 | <NS_References> |
---|
133 | <NS_Reference>Wood et al. ,2002: Atmos. Res., 65, 109-128</NS_Reference> |
---|
134 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p026.pdf</NS_Reference> |
---|
135 | <NS_Reference>http://cgam.nerc.ac.uk/dev/um/docs/UM45_sci/p029.pdf</NS_Reference> |
---|
136 | </NS_References> |
---|
137 | </NS_Component> |
---|
138 | <NS_Component> |
---|
139 | <NS_Name>Advection and Diffusion</NS_Name> |
---|
140 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
141 | <NS_Description> |
---|
142 | A semi-lagrangian advection scheme is used. |
---|
143 | The advection of potential temperature, moisture, density and winds are treated separately. |
---|
144 | Moisture is conserved using a non-hydrostatic scheme. |
---|
145 | A conservative horizontal diffusion scheme is used. |
---|
146 | Vertical diffusion is switched off. |
---|
147 | </NS_Description> |
---|
148 | <NS_References> |
---|
149 | <NS_Reference> |
---|
150 | http://www2.met-office.gov.uk/research/nwp/publications/papers/unified_model/umdp15_v6.0.pdf |
---|
151 | </NS_Reference> |
---|
152 | </NS_References> |
---|
153 | </NS_Component> |
---|
154 | <NS_Component> |
---|
155 | <NS_Name>Aerosols</NS_Name> |
---|
156 | <NS_ComponentType>Atmosphere</NS_ComponentType> |
---|
157 | <NS_Description> |
---|
158 | Aerosol parameterisation includes a sulphur cycle, soot scheme and biomass aerosol scheme. |
---|
159 | The sulphur cycle includes SO2 emissions from the surface, chimneys and volcanoes. |
---|
160 | The sulphur cycle also uses an interactive dimethyl sulphide scheme. |
---|
161 | The biomass scheme includes emissions from the surface and from high levels. |
---|
162 | </NS_Description> |
---|
163 | </NS_Component> |
---|
164 | <NS_Component> |
---|
165 | <NS_Name>Rivers</NS_Name> |
---|
166 | <NS_ComponentType>LandSurface</NS_ComponentType> |
---|
167 | <NS_Description> |
---|
168 | All rivers flow with an effective velocity of 0.4 m/s and a meander ratio of 1.4. |
---|
169 | River outflow to the ocean is included. |
---|
170 | </NS_Description> |
---|
171 | </NS_Component> |
---|
172 | </NS_Component> |
---|
173 | <NS_Component> |
---|
174 | <NS_Name>Ocean</NS_Name> |
---|
175 | <NS_ComponentType>Ocean</NS_ComponentType> |
---|
176 | <NS_Description></NS_Description> |
---|
177 | <NS_References> |
---|
178 | <NS_Reference></NS_Reference> |
---|
179 | </NS_References> |
---|
180 | </NS_Component> |
---|
181 | <NS_Component> |
---|
182 | <NS_Name>Sea Ice</NS_Name> |
---|
183 | <NS_ComponentType>Cryosphere</NS_ComponentType> |
---|
184 | <NS_Description> </NS_Description> |
---|
185 | <NS_References> |
---|
186 | <NS_Reference> </NS_Reference> |
---|
187 | </NS_References> |
---|
188 | </NS_Component> |
---|
189 | <NS_Component> |
---|
190 | <NS_Name>Atmos-Ocean Coupler</NS_Name> |
---|
191 | <NS_ComponentType>Coupler</NS_ComponentType> |
---|
192 | <NS_Description> </NS_Description> |
---|
193 | </NS_Component> |
---|
194 | </NS_Model> |
---|
195 | </NS_CodeBase> |
---|
196 | <NS_Experiment> |
---|
197 | <NS_Description></NS_Description> |
---|
198 | <NS_BoundaryCondition NS_Type="Present Day"> |
---|
199 | <NS_Description></NS_Description> |
---|
200 | </NS_BoundaryCondition> |
---|
201 | <NS_InitialCondition NS_Type="Unknown"> |
---|
202 | <NS_Description></NS_Description> |
---|
203 | </NS_InitialCondition> |
---|
204 | </NS_Experiment> |
---|
205 | </NS_Simulated> |
---|