source: TI01-discovery/trunk/schema/numsim/NMM/higem/HiGEM_HADGEM_6.1_control.xml @ 1089

Subversion URL:
Revision 1089, 13.1 KB checked in by hearnsha, 15 years ago (diff)

Created numsim record of Higem Atmosphere.

1<?xml version="1.0" encoding="UTF-8"?>
2<NS_Simulated xmlns:xsi=""
3    xmlns:xlink="" xsi:noNamespaceSchemaLocation="../../NumSim.xsd">
4    <!-- Note that this is a handcoded example XML file which should not be regarded as
5        authoratative about the Higem control run, Charlotte Pascoe, May 2006 -->
6    <NS_CodeBase>
7        <NS_Description>This is the HiGEM codebase</NS_Description>
8        <NS_Model>
9            <NS_Name>HiGEM V6.1 Control (xbpjt)</NS_Name>
10            <NS_Category>GCM</NS_Category>
11            <NS_RelatedModel
12                xlink:href=""
13                xlink:title="HiGEM">
14                <NS_Relationship>This is the first HiGEM climate run </NS_Relationship>
15            </NS_RelatedModel>
16            <NS_References>
17                <NS_Reference></NS_Reference>
18            </NS_References>
19            <NS_Component>
20                <NS_Name>Atmosphere</NS_Name>
21                <NS_ComponentType>Atmosphere</NS_ComponentType>
22                <NS_Description>
23                    The atmospheric component of HiGEM has 38 vertical levels with a horizontal
24                    resolution of 1.25 degrees of latitude by 1.65 degrees of longitude, which
25                    produces a global grid of 288 x 217 grid cells. This is equivalent to a surface
26                    resolution of about 139 km x 184 km at the Equator, reducing to 98 km x 184 km
27                    at 45 degrees of latitude (comparable to a spectral resolution of Nblah).
28                    The atmospheric timestep period is 20 minutes (72 timesteps per 1 days).
29                </NS_Description>
30                <NS_Component>
31                    <NS_Name>Radiation Scheme</NS_Name>
32                    <NS_Description> 
33                        A general 2-stream radiation code including cloud microphysics.
34                        The radiation scheme uses 6 spectral bands in the solar (shortwave) wavelenths
35                        and 9 bands in the terrestrial thermal (longwave) wavelengths.
36                        The radiative effects of CO2 and ozone are explicitly represented as well as oxygen, methane, N2O, CFC-11 and CFC-12.
37                        The LW and SW radiative effects of climatological distributions of sulphate, seasalt, soot and biomass aerosols are included.
38                        Including cloud area parameterisation produces an Area Cloud Fraction which replaces the bulk value used in the radiation code.
39                        Mixed phase clouds containing both ice and water are segregated into separate sub-clouds for radiation calculations.
40                    </NS_Description>
41                    <NS_References>
42                        <NS_Reference>
43                            JM Edwards, Slingo A, 1996: Studies with a flexible new radiation code. 1. Choosing a configuration for a large-scale model
44                      QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 122(531) 689-719
45                        </NS_Reference>
46                    </NS_References>
47                </NS_Component>
48                <NS_Component>
49                    <NS_Name>Land Surface Scheme</NS_Name>
50                    <NS_ComponentType>LandSurface</NS_ComponentType>
51                    <NS_Description>
52                        The surface albedo is a function of snow depth and the temperature of the snow over sea ice.
53                        The surface hydrology uses the MOSES-II (Met Office Surface Exchange Scheme).
54                        The vegetation distribution is fixed.
55                        Using coastal tiling allows both land and sea to co-exist in the same gridbox.
56                        There are 9 land surface tiles per grid cell.
57                    </NS_Description>
58                    <NS_References>
59                        <NS_Reference>
61                            JOURNAL OF CLIMATE 8 (2): 240-247
62                        </NS_Reference>
63                    </NS_References>
64                </NS_Component>
65                <NS_Component>
66                    <NS_Name>boundary layer scheme</NS_Name>
67                    <NS_ComponentType>Atmosphere</NS_ComponentType>
68                    <NS_Description>
69                        The boundary layer scheme explicitly parameterises the top-of-mixed-layer entrainment.
70                        Uses a formulation of the surface exchange coefficients based directly on Monin-Obukhov stability functions.
71                        Uses a new subgrid diagnosis of cloud-base height in order to improve the accuracy of the buoyancy flux integral
72                        used to diagnose the depth of mixing in stratocumulus clouds.                                       
73                        The scheme splits the radiative heating increments into separate LW and SW contributions. 
74                        The boundary layer uses a Richardson number based mixing scheme and orographic roughness fields.
75                        The scheme accounts for the radiative coupling and the thermal capacity of the vegetation canopy.
76                    </NS_Description>
77                    <NS_References>
78                        <NS_Reference>Lock, A. P. 2001: The numerical representation of entrainment in parametrizations of boundary layer turbulent mixing.
79                            MWR, 129, 1148-1163
80                        </NS_Reference>
81                        <NS_Reference>Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, R. N. B. Smith et al. 2000:
82                            A new boundary layer mixing scheme. Part I: scheme description and SCM tests. MWR, 128, 3187-3199
83                        </NS_Reference>
84                    </NS_References>
85                </NS_Component>         
86                <NS_Component>
87                    <NS_Name>Convection Scheme</NS_Name>
88                    <NS_ComponentType>Atmosphere</NS_ComponentType>
89                    <NS_Description>
90                        Convection is able to transport momentum in the vertical.
91                        The inital convective plume mass flux is determined by a CAPE based clousure scheme.
92                        The radiative representation of anvils modifies the convective cloud amount (CCA) to vary with height during deep convection.
93                        Excluding precipitation from the water path means that the radiation scheme does not 'see' the convective rain and snow.
94                        The accurate treatment of precipitation phase change ensures that precipitation does not change phase if the associated latent
95                        cooling would take the temperature below the freezing point again.
96                    </NS_Description>
97                    <NS_References>
98                        <NS_Reference></NS_Reference>
99                        <NS_Reference></NS_Reference>
100                    </NS_References>
101                </NS_Component>
102                <NS_Component>
103                    <NS_Name>Gravity Wave</NS_Name>
104                    <NS_ComponentType>Atmosphere</NS_ComponentType>
105                    <NS_Description>
106                        Orographic gravitity wave scheme including flow blocking.
107                        The gravity wave constant is  1.00e+05 and defines the magnitude of the parametrized response.
108                        The critical Froude number is 4.00 and determines the proportion of that drag attributed to flow blocking
109                        and gravity wave drag respectively.
110                        The spectral gravity wave scheme is not used.
111                    </NS_Description>
112                    <NS_References>
113                        <NS_Reference>Webster S., A.R. Brown, D.R. Cameron and C.P. Jones, 2003:
114                            Improvements to the Representation of Orography in the Met Office Unified Model.
115                            Quarterly Journal of the Royal Meteorological Society, 129 (591): 1989-2010 Part B.
116                        </NS_Reference>
117                    </NS_References>
118                </NS_Component>
119                <NS_Component>
120                    <NS_Name>Precip and Cloud Scheme</NS_Name>
121                    <NS_ComponentType>Atmosphere</NS_ComponentType>
122                    <NS_Description> The large scale precipitation scheme contains a full microphysical calculation of the cloud phase and
123                        generation of precipitation with water vapour, cloud liquid water and ice particle content as prognostic variables.
124                        Microphysical processes are treated as transfer terms between water vapour, liquid, ice, and rain.
125                        In the 3C scheme the fraction of cloud ice content that is pristine ice crystals and snow aggregate particles are treated
126                        seperately in the microphysical transfer terms.     
127                        Condensation can occur before grid scale supersaturation and the vapour is condensed to cloud water.
128                        The conversion from vapour to liquid or frozen cloud water is reversible.
129                        INCLUDING RHcrit parametrization causes the cloud scheme to use 3D diagnosed critical relative humidity.
130                        INCLUDING cloud area parametrization produces an Area Cloud Fraction which replaces the Bulk value in much of the radiation code.
131                    </NS_Description>
132                    <NS_References>
133                        <NS_Reference>Wood et al. ,2002: Atmos. Res., 65, 109-128</NS_Reference>
134                        <NS_Reference></NS_Reference>
135                        <NS_Reference></NS_Reference>
136                     </NS_References>
137                </NS_Component>
138                <NS_Component>
139                    <NS_Name>Advection and Diffusion</NS_Name>
140                    <NS_ComponentType>Atmosphere</NS_ComponentType>
141                    <NS_Description>
142                        A semi-lagrangian advection scheme is used.
143                        The advection of potential temperature, moisture, density and winds are treated separately.
144                        Moisture is conserved using a non-hydrostatic scheme.
145                        A conservative horizontal diffusion scheme is used.
146                        Vertical diffusion is switched off.
147                    </NS_Description>
148                    <NS_References>
149                        <NS_Reference>
151                        </NS_Reference>
152                    </NS_References>
153                </NS_Component>
154                <NS_Component>
155                    <NS_Name>Aerosols</NS_Name>
156                    <NS_ComponentType>Atmosphere</NS_ComponentType>
157                    <NS_Description>
158                        Aerosol parameterisation includes a sulphur cycle, soot scheme and biomass aerosol scheme.
159                        The sulphur cycle includes SO2 emissions from the surface, chimneys and volcanoes.
160                        The sulphur cycle also uses an interactive dimethyl sulphide scheme.
161                        The biomass scheme includes emissions from the surface and from high levels.
162                    </NS_Description>
163                </NS_Component>
164                <NS_Component>
165                    <NS_Name>Rivers</NS_Name>
166                    <NS_ComponentType>LandSurface</NS_ComponentType>
167                    <NS_Description>
168                        All rivers flow with an effective velocity of 0.4 m/s and a meander ratio of 1.4.
169                        River outflow to the ocean is included.
170                    </NS_Description>
171                </NS_Component>
172            </NS_Component>
173            <NS_Component>
174                <NS_Name>Ocean</NS_Name>
175                <NS_ComponentType>Ocean</NS_ComponentType>
176                <NS_Description></NS_Description>
177                <NS_References>
178                    <NS_Reference></NS_Reference>
179                </NS_References>
180            </NS_Component>
181            <NS_Component>
182                <NS_Name>Sea Ice</NS_Name>
183                <NS_ComponentType>Cryosphere</NS_ComponentType>
184                <NS_Description> </NS_Description>
185                <NS_References>
186                    <NS_Reference> </NS_Reference>
187                </NS_References>
188            </NS_Component>
189            <NS_Component>
190                <NS_Name>Atmos-Ocean Coupler</NS_Name>
191                <NS_ComponentType>Coupler</NS_ComponentType>
192                <NS_Description> </NS_Description>
193            </NS_Component>
194        </NS_Model>
195    </NS_CodeBase>
196    <NS_Experiment>
197        <NS_Description></NS_Description>
198        <NS_BoundaryCondition NS_Type="Present Day">
199            <NS_Description></NS_Description>
200        </NS_BoundaryCondition>
201        <NS_InitialCondition NS_Type="Unknown">
202            <NS_Description></NS_Description>
203        </NS_InitialCondition>
204    </NS_Experiment>
Note: See TracBrowser for help on using the repository browser.